Loading…

New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems

In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on control and optimization 2013-01, Vol.51 (1), p.784-800
Main Authors: Grandvallet, B, Zemouche, A, Souley-Ali, H, Boutayeb, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23
cites cdi_FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23
container_end_page 800
container_issue 1
container_start_page 784
container_title SIAM journal on control and optimization
container_volume 51
creator Grandvallet, B
Zemouche, A
Souley-Ali, H
Boutayeb, M
description In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one inequality. Based on the Lyapunov theory and the use of mathematical artifacts such as matrix decomposition and the Young relation, the novel sufficient synthesis condition is expressed in terms of LMI, which can be easily solved by numerical tools. An application to a flexible link robot manipulator is provided to show the consistency of the proposed approach. A second numerical example is devoted to demonstrating the superiority and the lower conservatism of the proposed LMI compared to those available in the literature. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/11085623X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323243972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323243972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23</originalsourceid><addsrcrecordid>eNpdkUtLw0AUhQdRsD4W_oMBXegiOndunkutjwq1XbSCCyFMkjs4kmR0JlWq-N9NrbiQuzh38Z3DgcPYAYhTAEzOAEQaxRIfNtgARBYFCWC6yQYCYwwEyGyb7Xj_LASEIYQD9j6hdz6-u-VD21amM7bl2jo-LTy5N3LBhfJU8aPHRnVPpao_R1_556Npdbf8OuKzThWmNh_qx2c1V3xYK-9X78S2tWlJOX5pfOmoo2BuGuKzpe-o8XtsS6va0_6v7rL766v5cBSMpze3w_NxUAJGMkDUGFWFQiSlykQoFUZVlcWUiVRDoUNRiSSWIEFrSsJUpjHINEvKUKZEhcRddrzOfXH2dUG-y5u-DtW1askufA4oUYaYJSv08B_6bBeu7dv1VH8pxnHUUydrqnTWe0c6f3GmUW6Zg8hXE-R_E-A3-kt3vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313183665</pqid></control><display><type>article</type><title>New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global (ProQuest)</source><creator>Grandvallet, B ; Zemouche, A ; Souley-Ali, H ; Boutayeb, M</creator><creatorcontrib>Grandvallet, B ; Zemouche, A ; Souley-Ali, H ; Boutayeb, M</creatorcontrib><description>In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one inequality. Based on the Lyapunov theory and the use of mathematical artifacts such as matrix decomposition and the Young relation, the novel sufficient synthesis condition is expressed in terms of LMI, which can be easily solved by numerical tools. An application to a flexible link robot manipulator is provided to show the consistency of the proposed approach. A second numerical example is devoted to demonstrating the superiority and the lower conservatism of the proposed LMI compared to those available in the literature. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/11085623X</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Inequality ; Links ; Mathematical analysis ; Mathematical models ; Methods ; Nonlinearity ; Observers ; Robots ; Stabilization</subject><ispartof>SIAM journal on control and optimization, 2013-01, Vol.51 (1), p.784-800</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23</citedby><cites>FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1313183665?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Grandvallet, B</creatorcontrib><creatorcontrib>Zemouche, A</creatorcontrib><creatorcontrib>Souley-Ali, H</creatorcontrib><creatorcontrib>Boutayeb, M</creatorcontrib><title>New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems</title><title>SIAM journal on control and optimization</title><description>In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one inequality. Based on the Lyapunov theory and the use of mathematical artifacts such as matrix decomposition and the Young relation, the novel sufficient synthesis condition is expressed in terms of LMI, which can be easily solved by numerical tools. An application to a flexible link robot manipulator is provided to show the consistency of the proposed approach. A second numerical example is devoted to demonstrating the superiority and the lower conservatism of the proposed LMI compared to those available in the literature. [PUBLICATION ABSTRACT]</description><subject>Inequality</subject><subject>Links</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Nonlinearity</subject><subject>Observers</subject><subject>Robots</subject><subject>Stabilization</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkUtLw0AUhQdRsD4W_oMBXegiOndunkutjwq1XbSCCyFMkjs4kmR0JlWq-N9NrbiQuzh38Z3DgcPYAYhTAEzOAEQaxRIfNtgARBYFCWC6yQYCYwwEyGyb7Xj_LASEIYQD9j6hdz6-u-VD21amM7bl2jo-LTy5N3LBhfJU8aPHRnVPpao_R1_556Npdbf8OuKzThWmNh_qx2c1V3xYK-9X78S2tWlJOX5pfOmoo2BuGuKzpe-o8XtsS6va0_6v7rL766v5cBSMpze3w_NxUAJGMkDUGFWFQiSlykQoFUZVlcWUiVRDoUNRiSSWIEFrSsJUpjHINEvKUKZEhcRddrzOfXH2dUG-y5u-DtW1askufA4oUYaYJSv08B_6bBeu7dv1VH8pxnHUUydrqnTWe0c6f3GmUW6Zg8hXE-R_E-A3-kt3vA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Grandvallet, B</creator><creator>Zemouche, A</creator><creator>Souley-Ali, H</creator><creator>Boutayeb, M</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems</title><author>Grandvallet, B ; Zemouche, A ; Souley-Ali, H ; Boutayeb, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Inequality</topic><topic>Links</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Nonlinearity</topic><topic>Observers</topic><topic>Robots</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grandvallet, B</creatorcontrib><creatorcontrib>Zemouche, A</creatorcontrib><creatorcontrib>Souley-Ali, H</creatorcontrib><creatorcontrib>Boutayeb, M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grandvallet, B</au><au>Zemouche, A</au><au>Souley-Ali, H</au><au>Boutayeb, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>51</volume><issue>1</issue><spage>784</spage><epage>800</epage><pages>784-800</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one inequality. Based on the Lyapunov theory and the use of mathematical artifacts such as matrix decomposition and the Young relation, the novel sufficient synthesis condition is expressed in terms of LMI, which can be easily solved by numerical tools. An application to a flexible link robot manipulator is provided to show the consistency of the proposed approach. A second numerical example is devoted to demonstrating the superiority and the lower conservatism of the proposed LMI compared to those available in the literature. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/11085623X</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2013-01, Vol.51 (1), p.784-800
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_miscellaneous_1323243972
source SIAM Journals Archive; ABI/INFORM Global (ProQuest)
subjects Inequality
Links
Mathematical analysis
Mathematical models
Methods
Nonlinearity
Observers
Robots
Stabilization
title New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20LMI%20Condition%20for%20Observer-Based%20$%5Cmathcal%7BH%7D_%7B%5Cinfty%7D$%20Stabilization%20of%20a%20Class%20of%20Nonlinear%20Discrete-Time%20Systems&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Grandvallet,%20B&rft.date=2013-01-01&rft.volume=51&rft.issue=1&rft.spage=784&rft.epage=800&rft.pages=784-800&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/11085623X&rft_dat=%3Cproquest_cross%3E1323243972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1313183665&rft_id=info:pmid/&rfr_iscdi=true