Loading…
New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems
In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one...
Saved in:
Published in: | SIAM journal on control and optimization 2013-01, Vol.51 (1), p.784-800 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23 |
container_end_page | 800 |
container_issue | 1 |
container_start_page | 784 |
container_title | SIAM journal on control and optimization |
container_volume | 51 |
creator | Grandvallet, B Zemouche, A Souley-Ali, H Boutayeb, M |
description | In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one inequality. Based on the Lyapunov theory and the use of mathematical artifacts such as matrix decomposition and the Young relation, the novel sufficient synthesis condition is expressed in terms of LMI, which can be easily solved by numerical tools. An application to a flexible link robot manipulator is provided to show the consistency of the proposed approach. A second numerical example is devoted to demonstrating the superiority and the lower conservatism of the proposed LMI compared to those available in the literature. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/11085623X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1323243972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323243972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23</originalsourceid><addsrcrecordid>eNpdkUtLw0AUhQdRsD4W_oMBXegiOndunkutjwq1XbSCCyFMkjs4kmR0JlWq-N9NrbiQuzh38Z3DgcPYAYhTAEzOAEQaxRIfNtgARBYFCWC6yQYCYwwEyGyb7Xj_LASEIYQD9j6hdz6-u-VD21amM7bl2jo-LTy5N3LBhfJU8aPHRnVPpao_R1_556Npdbf8OuKzThWmNh_qx2c1V3xYK-9X78S2tWlJOX5pfOmoo2BuGuKzpe-o8XtsS6va0_6v7rL766v5cBSMpze3w_NxUAJGMkDUGFWFQiSlykQoFUZVlcWUiVRDoUNRiSSWIEFrSsJUpjHINEvKUKZEhcRddrzOfXH2dUG-y5u-DtW1askufA4oUYaYJSv08B_6bBeu7dv1VH8pxnHUUydrqnTWe0c6f3GmUW6Zg8hXE-R_E-A3-kt3vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313183665</pqid></control><display><type>article</type><title>New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global (ProQuest)</source><creator>Grandvallet, B ; Zemouche, A ; Souley-Ali, H ; Boutayeb, M</creator><creatorcontrib>Grandvallet, B ; Zemouche, A ; Souley-Ali, H ; Boutayeb, M</creatorcontrib><description>In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one inequality. Based on the Lyapunov theory and the use of mathematical artifacts such as matrix decomposition and the Young relation, the novel sufficient synthesis condition is expressed in terms of LMI, which can be easily solved by numerical tools. An application to a flexible link robot manipulator is provided to show the consistency of the proposed approach. A second numerical example is devoted to demonstrating the superiority and the lower conservatism of the proposed LMI compared to those available in the literature. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/11085623X</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Inequality ; Links ; Mathematical analysis ; Mathematical models ; Methods ; Nonlinearity ; Observers ; Robots ; Stabilization</subject><ispartof>SIAM journal on control and optimization, 2013-01, Vol.51 (1), p.784-800</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23</citedby><cites>FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1313183665?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363</link.rule.ids></links><search><creatorcontrib>Grandvallet, B</creatorcontrib><creatorcontrib>Zemouche, A</creatorcontrib><creatorcontrib>Souley-Ali, H</creatorcontrib><creatorcontrib>Boutayeb, M</creatorcontrib><title>New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems</title><title>SIAM journal on control and optimization</title><description>In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one inequality. Based on the Lyapunov theory and the use of mathematical artifacts such as matrix decomposition and the Young relation, the novel sufficient synthesis condition is expressed in terms of LMI, which can be easily solved by numerical tools. An application to a flexible link robot manipulator is provided to show the consistency of the proposed approach. A second numerical example is devoted to demonstrating the superiority and the lower conservatism of the proposed LMI compared to those available in the literature. [PUBLICATION ABSTRACT]</description><subject>Inequality</subject><subject>Links</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Nonlinearity</subject><subject>Observers</subject><subject>Robots</subject><subject>Stabilization</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkUtLw0AUhQdRsD4W_oMBXegiOndunkutjwq1XbSCCyFMkjs4kmR0JlWq-N9NrbiQuzh38Z3DgcPYAYhTAEzOAEQaxRIfNtgARBYFCWC6yQYCYwwEyGyb7Xj_LASEIYQD9j6hdz6-u-VD21amM7bl2jo-LTy5N3LBhfJU8aPHRnVPpao_R1_556Npdbf8OuKzThWmNh_qx2c1V3xYK-9X78S2tWlJOX5pfOmoo2BuGuKzpe-o8XtsS6va0_6v7rL766v5cBSMpze3w_NxUAJGMkDUGFWFQiSlykQoFUZVlcWUiVRDoUNRiSSWIEFrSsJUpjHINEvKUKZEhcRddrzOfXH2dUG-y5u-DtW1askufA4oUYaYJSv08B_6bBeu7dv1VH8pxnHUUydrqnTWe0c6f3GmUW6Zg8hXE-R_E-A3-kt3vA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Grandvallet, B</creator><creator>Zemouche, A</creator><creator>Souley-Ali, H</creator><creator>Boutayeb, M</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems</title><author>Grandvallet, B ; Zemouche, A ; Souley-Ali, H ; Boutayeb, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Inequality</topic><topic>Links</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Nonlinearity</topic><topic>Observers</topic><topic>Robots</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grandvallet, B</creatorcontrib><creatorcontrib>Zemouche, A</creatorcontrib><creatorcontrib>Souley-Ali, H</creatorcontrib><creatorcontrib>Boutayeb, M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grandvallet, B</au><au>Zemouche, A</au><au>Souley-Ali, H</au><au>Boutayeb, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>51</volume><issue>1</issue><spage>784</spage><epage>800</epage><pages>784-800</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>In this paper a new LMI (linear matrix inequality) condition is provided for the observer-based $\mathcal{H}_{\infty}$ stabilization of a class of nonlinear discrete-time systems. With the proposed design methodology, the observer and controller gains are computed simultaneously by solving only one inequality. Based on the Lyapunov theory and the use of mathematical artifacts such as matrix decomposition and the Young relation, the novel sufficient synthesis condition is expressed in terms of LMI, which can be easily solved by numerical tools. An application to a flexible link robot manipulator is provided to show the consistency of the proposed approach. A second numerical example is devoted to demonstrating the superiority and the lower conservatism of the proposed LMI compared to those available in the literature. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/11085623X</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 2013-01, Vol.51 (1), p.784-800 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1323243972 |
source | SIAM Journals Archive; ABI/INFORM Global (ProQuest) |
subjects | Inequality Links Mathematical analysis Mathematical models Methods Nonlinearity Observers Robots Stabilization |
title | New LMI Condition for Observer-Based $\mathcal{H}_{\infty}$ Stabilization of a Class of Nonlinear Discrete-Time Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20LMI%20Condition%20for%20Observer-Based%20$%5Cmathcal%7BH%7D_%7B%5Cinfty%7D$%20Stabilization%20of%20a%20Class%20of%20Nonlinear%20Discrete-Time%20Systems&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Grandvallet,%20B&rft.date=2013-01-01&rft.volume=51&rft.issue=1&rft.spage=784&rft.epage=800&rft.pages=784-800&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/11085623X&rft_dat=%3Cproquest_cross%3E1323243972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1352-33f35dba33eaac70aa45dd96e908f1bf40d0762121ffe74828612897c428eeb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1313183665&rft_id=info:pmid/&rfr_iscdi=true |