Loading…
Residual elastic stress–strain field and geometrically necessary dislocation density distribution around nano-indentation in TA15 titanium alloy
Nanoindentation and high resolution electron backscatter diffraction (EBSD) were combined to examine the elastic modulus and hardness of α and β phases, anisotropy in residual elastic stress–strain fields and distributions of geometrically necessary dislocation (GND) density around the indentations...
Saved in:
Published in: | Transactions of Nonferrous Metals Society of China 2013-01, Vol.23 (1), p.7-13 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanoindentation and high resolution electron backscatter diffraction (EBSD) were combined to examine the elastic modulus and hardness of α and β phases, anisotropy in residual elastic stress–strain fields and distributions of geometrically necessary dislocation (GND) density around the indentations within TA15 titanium alloy. The nano-indention tests were conducted on α and β phases, respectively. The residual stress–strain fields surrounding the indentation were calculated through cross-correlation method from recorded patterns. The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation. The results indicate that the elastic modulus and hardness for α phase are 129.05 GPas and 6.44 GPa, while for β phase, their values are 109.80 GPa and 4.29 GPa, respectively. The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase. The region with low residual stress around the indentation is accompanied with markedly high 〈a〉 type and prismatic-GND density. |
---|---|
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(13)62422-X |