Loading…

Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine

Segmentation is an important process in nutrient mixing and absorption; however, the mechanisms underlying this motility pattern are poorly understood. Segmentation can be induced by luminal perfusion of fatty acid in guinea pig small intestine in vitro and mimicked by the serotonin (5-HT) reuptake...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology: Gastrointestinal and liver physiology 2013-04, Vol.304 (8), p.G749-G761
Main Authors: Ellis, Melina, Chambers, Jordan D, Gwynne, Rachel M, Bornstein, Joel C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Segmentation is an important process in nutrient mixing and absorption; however, the mechanisms underlying this motility pattern are poorly understood. Segmentation can be induced by luminal perfusion of fatty acid in guinea pig small intestine in vitro and mimicked by the serotonin (5-HT) reuptake inhibitor fluoxetine (300 nM) and by cholecystokinin (CCK). Serotonergic and CCK-related mechanisms underlying nutrient-induced segmentation were investigated using selective 5-HT and CCK receptor antagonists on isolated segments of small intestine luminally perfused with 1 mM decanoic acid. Motility patterns were analyzed using video imaging and spatiotemporal maps. Segmenting activity mediated by decanoic acid was depressed following luminal application of the 5-HT receptor antagonists granisetron (5-HT(3), 1 μM) and SB-207266 (5-HT(4), 10 nM) and the CCK receptor antagonists devazepide (CCK-1, 300 nM) and L-365260 (CCK-2, 300 nM), but these antagonists did not further depress segmentation when combined. The P2 receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonate (10 μM) had no effect on activity. Serosal application of 5-HT antagonists had little effect on segmentation in the duodenum but reduced activity in the jejunum when granisetron and SB-207266 were applied together. These results reveal that 5-HT(3) and 5-HT(4) receptors, as well as CCK-1 and CCK-2 receptors, are critical in regulating decanoic acid-induced segmentation. Computational simulation indicated that these data are consistent with decanoic acid activating two pathways in the mucosa that converge within the enteric neural circuitry, while contraction-induced release of 5-HT from the mucosa provides feedback into the neural circuit to set the time course of the overall contractile activity.
ISSN:0193-1857
1522-1547
DOI:10.1152/ajpgi.00358.2012