Loading…

FTIR and Raman Spectral Research on Metamorphism and Deformation of Coal

Under different metamorphic environments, coal will form different types of tectonically deformed coal (TDC) by tectonic stress and even the macromolecular structure can be changed. The structure and composition evolution of TDC have been investigated in details using Fourier transform infrared spec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geological Research 2012-01, Vol.2012 (2012), p.1-8
Main Authors: Li, Xiaoshi, Ju, Yiwen, Hou, Quan-Lin, Li, Zhuo, Fan, Junjia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under different metamorphic environments, coal will form different types of tectonically deformed coal (TDC) by tectonic stress and even the macromolecular structure can be changed. The structure and composition evolution of TDC have been investigated in details using Fourier transform infrared spectroscopy and Raman spectroscopy. The ductile deformation can generate strain energy via increase of dislocation in molecular structure of TDC, and it can exert an obvious influence on degradation and polycondensation. The brittle deformation can generate frictional heat energy and promote the metamorphism and degradation, but less effect on polycondensation. Furthermore, degradation affects the structural evolution of coal in lower metamorphic stage primarily, whereas polycondensation is the most important controlling factor in higher metamorphic stage. Tectonic deformation can produce secondary structural defects in macromolecular structure of TDC. Under the control of metamorphism and deformation, the small molecules which break and fall off from the macromolecular structure of TDC are replenished and embedded into the secondary structural defects preferentially and form aromatic rings by polycondensation. These processes improved the stability of macromolecular structure greatly. It is easier for ductile deformation to induce secondary structural defects than in brittle deformation.
ISSN:1687-8833
1687-8841
DOI:10.1155/2012/590857