Loading…
Dual signaling of hydrazine by selective deprotection of dichlorofluorescein and resorufin acetates
The highly selective chemosignaling behaviors for hydrazine by a reaction-based probe of dichlorofluorescein and resorufin acetates were investigated. Hydrazinolysis of latent dichlorofluorescein and resorufin acetate fluorochromes caused prominent chromogenic and fluorescent turn-on type signals. T...
Saved in:
Published in: | Organic & biomolecular chemistry 2013-05, Vol.11 (18), p.2961-2965 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The highly selective chemosignaling behaviors for hydrazine by a reaction-based probe of dichlorofluorescein and resorufin acetates were investigated. Hydrazinolysis of latent dichlorofluorescein and resorufin acetate fluorochromes caused prominent chromogenic and fluorescent turn-on type signals. The probes selectively detected hydrazine in the presence of commonly encountered metal ions and anions as background. Dichlorofluorescein and resorufin acetates selectively detected hydrazine with detection limits of 9.0 × 10(-8) M and 8.2 × 10(-7) M, respectively. Furthermore, hydrazine was selectively detected over other closely related compounds, such as hydroxylamine, ethylenediamine, and ammonia. As a possible application of the acetate probes, hydrazine signaling in tap water was tested. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/c3ob40091c |