Loading…
Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China
This study evaluates the performance of RegCM3 (Regional Climate Model Version 3) in simulating the East Asian rainfall, with emphasis on the diurnal variations of rainfall over Southeast China during the 1998–2002 summer (June–August) seasons. The evaluation focuses on the sensitivity of the choice...
Saved in:
Published in: | Climate dynamics 2013-04, Vol.40 (7-8), p.1625-1642 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study evaluates the performance of RegCM3 (Regional Climate Model Version 3) in simulating the East Asian rainfall, with emphasis on the diurnal variations of rainfall over Southeast China during the 1998–2002 summer (June–August) seasons. The evaluation focuses on the sensitivity of the choice of cumulus parameterizations and model domain. With the right setup, the spatial and temporal evolution of diurnal rainfall over Southeast China, which has not been well simulated by past studies, can be accurately simulated by RegCM3. Results show that the Emanuel cumulus scheme has a more realistic simulation of summer mean rainfall in East Asia, while the GFC (Grell scheme with the Frisch-Chappell convective closure assumption) scheme is better in simulating the diurnal variations of rainfall over Southeast China. The better performance of these two schemes [relative to the other two schemes in RegCM3: the Kuo scheme and the GAS (Grell scheme with the Arakawa–Schubert closure assumption) scheme] can be attributed to the reasonable reproduction of the major formation mechanism of rainfall—the moisture flux convergence—over Southeast China. Furthermore, when the simulation domain covers the entire Tibetan Plateau, the diurnal variations of rainfall over Southeast China are found to exhibit a noticeable improvement without changes in the physics schemes. |
---|---|
ISSN: | 0930-7575 1432-0894 |
DOI: | 10.1007/s00382-012-1457-2 |