Loading…
Emotion Classification in Arabic Poetry using Machine Learning
In recent years, work on sentiment analysis and automatic text classification in Arabic has seen some progress. However, the problem of emotion classification remains widely under-researched. This work attempts to remedy the situation by considering the problem of classifying documents by their over...
Saved in:
Published in: | International journal of computer applications 2013-01, Vol.65 (16) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 16 |
container_start_page | |
container_title | International journal of computer applications |
container_volume | 65 |
creator | Alsharif, Ouais Alshamaa, Deema Ghneim, Nada |
description | In recent years, work on sentiment analysis and automatic text classification in Arabic has seen some progress. However, the problem of emotion classification remains widely under-researched. This work attempts to remedy the situation by considering the problem of classifying documents by their overall sentiment into four affect categories that are present in Arabic poetry- Retha, Ghazal, Fakhr and Heja. This work begins by building an emotional annotated Arabic poetry corpus. The impact of different levels of language preprocessing settings, feature vector dimensions and machine learning algorithms is, then, investigated and evaluated on the emotion classi?cation task. |
doi_str_mv | 10.5120/11006-6300 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349431392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920955491</sourcerecordid><originalsourceid>FETCH-LOGICAL-p612-d7c7768ac6b9943ac7619c67cab13a33c38a30e5d816b794c8a95e4054f82bda3</originalsourceid><addsrcrecordid>eNpdj81LxDAQxYMouKx78S8IePFSTTr5vAhLWT-gooe9L9M01SzddG3ag_-9QT2I7zLzhh-PeYRccnYjecluOWdMFQoYOyELZrUsjDH69M9-TlYp7VkW2FJZsSB3m8MwhSHSqseUQhccftsQ6XrEJjj6Ovhp_KRzCvGNPqN7D9HT2uMY8-GCnHXYJ7_6nUuyvd9sq8eifnl4qtZ1cVS8LFrttFYGnWqsFYBOK26d0g4bDgjgwCAwL1vDVaOtcAat9IJJ0ZmyaRGW5Pon9jgOH7NP0-4QkvN9j9EPc9pxEDmX51IZvfqH7od5jPm5THGtJIBl8AWWXVbV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317653390</pqid></control><display><type>article</type><title>Emotion Classification in Arabic Poetry using Machine Learning</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Alsharif, Ouais ; Alshamaa, Deema ; Ghneim, Nada</creator><creatorcontrib>Alsharif, Ouais ; Alshamaa, Deema ; Ghneim, Nada</creatorcontrib><description>In recent years, work on sentiment analysis and automatic text classification in Arabic has seen some progress. However, the problem of emotion classification remains widely under-researched. This work attempts to remedy the situation by considering the problem of classifying documents by their overall sentiment into four affect categories that are present in Arabic poetry- Retha, Ghazal, Fakhr and Heja. This work begins by building an emotional annotated Arabic poetry corpus. The impact of different levels of language preprocessing settings, feature vector dimensions and machine learning algorithms is, then, investigated and evaluated on the emotion classi?cation task.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/11006-6300</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Classification ; Emotions ; Machine learning ; Mathematical analysis ; Preprocessing ; Remedies ; Tasks ; Texts</subject><ispartof>International journal of computer applications, 2013-01, Vol.65 (16)</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alsharif, Ouais</creatorcontrib><creatorcontrib>Alshamaa, Deema</creatorcontrib><creatorcontrib>Ghneim, Nada</creatorcontrib><title>Emotion Classification in Arabic Poetry using Machine Learning</title><title>International journal of computer applications</title><description>In recent years, work on sentiment analysis and automatic text classification in Arabic has seen some progress. However, the problem of emotion classification remains widely under-researched. This work attempts to remedy the situation by considering the problem of classifying documents by their overall sentiment into four affect categories that are present in Arabic poetry- Retha, Ghazal, Fakhr and Heja. This work begins by building an emotional annotated Arabic poetry corpus. The impact of different levels of language preprocessing settings, feature vector dimensions and machine learning algorithms is, then, investigated and evaluated on the emotion classi?cation task.</description><subject>Classification</subject><subject>Emotions</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Preprocessing</subject><subject>Remedies</subject><subject>Tasks</subject><subject>Texts</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdj81LxDAQxYMouKx78S8IePFSTTr5vAhLWT-gooe9L9M01SzddG3ag_-9QT2I7zLzhh-PeYRccnYjecluOWdMFQoYOyELZrUsjDH69M9-TlYp7VkW2FJZsSB3m8MwhSHSqseUQhccftsQ6XrEJjj6Ovhp_KRzCvGNPqN7D9HT2uMY8-GCnHXYJ7_6nUuyvd9sq8eifnl4qtZ1cVS8LFrttFYGnWqsFYBOK26d0g4bDgjgwCAwL1vDVaOtcAat9IJJ0ZmyaRGW5Pon9jgOH7NP0-4QkvN9j9EPc9pxEDmX51IZvfqH7od5jPm5THGtJIBl8AWWXVbV</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Alsharif, Ouais</creator><creator>Alshamaa, Deema</creator><creator>Ghneim, Nada</creator><general>Foundation of Computer Science</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Emotion Classification in Arabic Poetry using Machine Learning</title><author>Alsharif, Ouais ; Alshamaa, Deema ; Ghneim, Nada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p612-d7c7768ac6b9943ac7619c67cab13a33c38a30e5d816b794c8a95e4054f82bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification</topic><topic>Emotions</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Preprocessing</topic><topic>Remedies</topic><topic>Tasks</topic><topic>Texts</topic><toplevel>online_resources</toplevel><creatorcontrib>Alsharif, Ouais</creatorcontrib><creatorcontrib>Alshamaa, Deema</creatorcontrib><creatorcontrib>Ghneim, Nada</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsharif, Ouais</au><au>Alshamaa, Deema</au><au>Ghneim, Nada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion Classification in Arabic Poetry using Machine Learning</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>65</volume><issue>16</issue><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>In recent years, work on sentiment analysis and automatic text classification in Arabic has seen some progress. However, the problem of emotion classification remains widely under-researched. This work attempts to remedy the situation by considering the problem of classifying documents by their overall sentiment into four affect categories that are present in Arabic poetry- Retha, Ghazal, Fakhr and Heja. This work begins by building an emotional annotated Arabic poetry corpus. The impact of different levels of language preprocessing settings, feature vector dimensions and machine learning algorithms is, then, investigated and evaluated on the emotion classi?cation task.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/11006-6300</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2013-01, Vol.65 (16) |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349431392 |
source | Freely Accessible Science Journals - check A-Z of ejournals |
subjects | Classification Emotions Machine learning Mathematical analysis Preprocessing Remedies Tasks Texts |
title | Emotion Classification in Arabic Poetry using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion%20Classification%20in%20Arabic%20Poetry%20using%20Machine%20Learning&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Alsharif,%20Ouais&rft.date=2013-01-01&rft.volume=65&rft.issue=16&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/11006-6300&rft_dat=%3Cproquest%3E2920955491%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p612-d7c7768ac6b9943ac7619c67cab13a33c38a30e5d816b794c8a95e4054f82bda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1317653390&rft_id=info:pmid/&rfr_iscdi=true |