Loading…
Nanocomposites based on copolymers of fluorinated imide and polyhedral oligomeric silsesquioxane macromonomer: microstructure and morphology studies
Towards the development of copolymeric nanocomposites, N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide (TFI) monomer and a macromonomer of polyhedral oligomeric silsesquioxane (POSS) were synthesized. Ring‐opening metathesis polymerization to copolymerization of specified proportions of...
Saved in:
Published in: | Polymer international 2013-02, Vol.62 (2), p.190-195 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4568-4332144427335e3da2efad27f74fe4860e83bc3c50df290b653eee910b777da93 |
---|---|
cites | cdi_FETCH-LOGICAL-c4568-4332144427335e3da2efad27f74fe4860e83bc3c50df290b653eee910b777da93 |
container_end_page | 195 |
container_issue | 2 |
container_start_page | 190 |
container_title | Polymer international |
container_volume | 62 |
creator | Gnanasekaran, Dhorali Madrhavan, Karunakaran Tsibouklis, John Reddy, BoreddySR |
description | Towards the development of copolymeric nanocomposites, N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide (TFI) monomer and a macromonomer of polyhedral oligomeric silsesquioxane (POSS) were synthesized. Ring‐opening metathesis polymerization to copolymerization of specified proportions of the two co‐monomers was carried out. All the monomers and polymers were characterized using Fourier transform IR analysis and 1H and 29Si NMR. Gel permeation chromatography shows that copolymeric nanocomposites have a lower average molar mass than a homopolymer of TFI (HTFI). TGA shows that the thermal stability of the copolymer is inversely proportional to the proportion of POSS units. DSC studies have demonstrated that the glass transition temperature (Tg) of a nanocomposite possessing 25 wt% POSS is at a higher temperature (180 °C) than that of HTFI (175 °C). Transmission electron microscopy and AFM images of copolymers are consistent with the self‐assembled spherical aggregation of POSS units, while X‐ray diffraction studies have confirmed the homogeneous dispersion of the same units within the nanocomposites. © 2012 Society of Chemical Industry
Linear copolymers of N‐(POSS)‐7‐oxanorbornene‐5,6‐dicarboximide (PNDI) and N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide were prepared through ring opening metathesis polymerization. The POSS incorporated nanocomposites showed a self‐assembled and ordered structure of POSS aggregates. |
doi_str_mv | 10.1002/pi.4278 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349452234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871247161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4568-4332144427335e3da2efad27f74fe4860e83bc3c50df290b653eee910b777da93</originalsourceid><addsrcrecordid>eNp10d1qFTEQB_BFFDxW8RUCIgpla752s_GuFG1La_XCj8uQk51tU7M722QXe96jD2yWPfRC8CoM8-OfGaYoXjN6xCjlH0Z_JLlqnhQbRrUqKeP102JDdaXLhlHxvHiR0i2ltNFab4qHKzugw37E5CdIZGsTtAQH4nDEsOshJoId6cKM0Q92yk3f-xaIHVqyiBtoow0Eg7_GrL0jyYcE6W72eG8HIL11EXsclu5H0vtcpSnObprjmtJjHG8w4PWOpGluPaSXxbPO5pBX-_eg-PH50_eTs_Ly6-n5yfFl6WRVN6UUgjMp87ZCVCBay6GzLVedkh3IpqbQiK0TrqJtxzXd1pUAAM3oVinVWi0Oivdr7hjxboY0md4nByHkuXFOhgmpZcW5kJm--Yfe4hyHPJ1hXLH8WUZZvVvVsmSK0Jkx-t7GnWHULNcxozfLdbJ8u8-zydnQRTs4nx45rxvJK7UkHq7ujw-w-1-c-Xa-Ty1X7dME94_axt-mVkJV5tfVqakvKLuQP8_MF_EXhYSvWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271860343</pqid></control><display><type>article</type><title>Nanocomposites based on copolymers of fluorinated imide and polyhedral oligomeric silsesquioxane macromonomer: microstructure and morphology studies</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gnanasekaran, Dhorali ; Madrhavan, Karunakaran ; Tsibouklis, John ; Reddy, BoreddySR</creator><creatorcontrib>Gnanasekaran, Dhorali ; Madrhavan, Karunakaran ; Tsibouklis, John ; Reddy, BoreddySR</creatorcontrib><description>Towards the development of copolymeric nanocomposites, N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide (TFI) monomer and a macromonomer of polyhedral oligomeric silsesquioxane (POSS) were synthesized. Ring‐opening metathesis polymerization to copolymerization of specified proportions of the two co‐monomers was carried out. All the monomers and polymers were characterized using Fourier transform IR analysis and 1H and 29Si NMR. Gel permeation chromatography shows that copolymeric nanocomposites have a lower average molar mass than a homopolymer of TFI (HTFI). TGA shows that the thermal stability of the copolymer is inversely proportional to the proportion of POSS units. DSC studies have demonstrated that the glass transition temperature (Tg) of a nanocomposite possessing 25 wt% POSS is at a higher temperature (180 °C) than that of HTFI (175 °C). Transmission electron microscopy and AFM images of copolymers are consistent with the self‐assembled spherical aggregation of POSS units, while X‐ray diffraction studies have confirmed the homogeneous dispersion of the same units within the nanocomposites. © 2012 Society of Chemical Industry
Linear copolymers of N‐(POSS)‐7‐oxanorbornene‐5,6‐dicarboximide (PNDI) and N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide were prepared through ring opening metathesis polymerization. The POSS incorporated nanocomposites showed a self‐assembled and ordered structure of POSS aggregates.</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.4278</identifier><identifier>CODEN: PLYIEI</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Agglomeration ; Applied sciences ; Composites ; Copolymers ; Dispersions ; Exact sciences and technology ; fluorinated imide ; Forms of application and semi-finished materials ; microstructure ; Monomers ; Nanocomposites ; Polyhedral oligomeric silsesquioxane ; Polymer industry, paints, wood ; Polymerization ; Technology of polymers</subject><ispartof>Polymer international, 2013-02, Vol.62 (2), p.190-195</ispartof><rights>2012 Society of Chemical Industry</rights><rights>2014 INIST-CNRS</rights><rights>2013 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4568-4332144427335e3da2efad27f74fe4860e83bc3c50df290b653eee910b777da93</citedby><cites>FETCH-LOGICAL-c4568-4332144427335e3da2efad27f74fe4860e83bc3c50df290b653eee910b777da93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26842573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnanasekaran, Dhorali</creatorcontrib><creatorcontrib>Madrhavan, Karunakaran</creatorcontrib><creatorcontrib>Tsibouklis, John</creatorcontrib><creatorcontrib>Reddy, BoreddySR</creatorcontrib><title>Nanocomposites based on copolymers of fluorinated imide and polyhedral oligomeric silsesquioxane macromonomer: microstructure and morphology studies</title><title>Polymer international</title><addtitle>Polym. Int</addtitle><description>Towards the development of copolymeric nanocomposites, N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide (TFI) monomer and a macromonomer of polyhedral oligomeric silsesquioxane (POSS) were synthesized. Ring‐opening metathesis polymerization to copolymerization of specified proportions of the two co‐monomers was carried out. All the monomers and polymers were characterized using Fourier transform IR analysis and 1H and 29Si NMR. Gel permeation chromatography shows that copolymeric nanocomposites have a lower average molar mass than a homopolymer of TFI (HTFI). TGA shows that the thermal stability of the copolymer is inversely proportional to the proportion of POSS units. DSC studies have demonstrated that the glass transition temperature (Tg) of a nanocomposite possessing 25 wt% POSS is at a higher temperature (180 °C) than that of HTFI (175 °C). Transmission electron microscopy and AFM images of copolymers are consistent with the self‐assembled spherical aggregation of POSS units, while X‐ray diffraction studies have confirmed the homogeneous dispersion of the same units within the nanocomposites. © 2012 Society of Chemical Industry
Linear copolymers of N‐(POSS)‐7‐oxanorbornene‐5,6‐dicarboximide (PNDI) and N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide were prepared through ring opening metathesis polymerization. The POSS incorporated nanocomposites showed a self‐assembled and ordered structure of POSS aggregates.</description><subject>Agglomeration</subject><subject>Applied sciences</subject><subject>Composites</subject><subject>Copolymers</subject><subject>Dispersions</subject><subject>Exact sciences and technology</subject><subject>fluorinated imide</subject><subject>Forms of application and semi-finished materials</subject><subject>microstructure</subject><subject>Monomers</subject><subject>Nanocomposites</subject><subject>Polyhedral oligomeric silsesquioxane</subject><subject>Polymer industry, paints, wood</subject><subject>Polymerization</subject><subject>Technology of polymers</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10d1qFTEQB_BFFDxW8RUCIgpla752s_GuFG1La_XCj8uQk51tU7M722QXe96jD2yWPfRC8CoM8-OfGaYoXjN6xCjlH0Z_JLlqnhQbRrUqKeP102JDdaXLhlHxvHiR0i2ltNFab4qHKzugw37E5CdIZGsTtAQH4nDEsOshJoId6cKM0Q92yk3f-xaIHVqyiBtoow0Eg7_GrL0jyYcE6W72eG8HIL11EXsclu5H0vtcpSnObprjmtJjHG8w4PWOpGluPaSXxbPO5pBX-_eg-PH50_eTs_Ly6-n5yfFl6WRVN6UUgjMp87ZCVCBay6GzLVedkh3IpqbQiK0TrqJtxzXd1pUAAM3oVinVWi0Oivdr7hjxboY0md4nByHkuXFOhgmpZcW5kJm--Yfe4hyHPJ1hXLH8WUZZvVvVsmSK0Jkx-t7GnWHULNcxozfLdbJ8u8-zydnQRTs4nx45rxvJK7UkHq7ujw-w-1-c-Xa-Ty1X7dME94_axt-mVkJV5tfVqakvKLuQP8_MF_EXhYSvWA</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Gnanasekaran, Dhorali</creator><creator>Madrhavan, Karunakaran</creator><creator>Tsibouklis, John</creator><creator>Reddy, BoreddySR</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201302</creationdate><title>Nanocomposites based on copolymers of fluorinated imide and polyhedral oligomeric silsesquioxane macromonomer: microstructure and morphology studies</title><author>Gnanasekaran, Dhorali ; Madrhavan, Karunakaran ; Tsibouklis, John ; Reddy, BoreddySR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4568-4332144427335e3da2efad27f74fe4860e83bc3c50df290b653eee910b777da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agglomeration</topic><topic>Applied sciences</topic><topic>Composites</topic><topic>Copolymers</topic><topic>Dispersions</topic><topic>Exact sciences and technology</topic><topic>fluorinated imide</topic><topic>Forms of application and semi-finished materials</topic><topic>microstructure</topic><topic>Monomers</topic><topic>Nanocomposites</topic><topic>Polyhedral oligomeric silsesquioxane</topic><topic>Polymer industry, paints, wood</topic><topic>Polymerization</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanasekaran, Dhorali</creatorcontrib><creatorcontrib>Madrhavan, Karunakaran</creatorcontrib><creatorcontrib>Tsibouklis, John</creatorcontrib><creatorcontrib>Reddy, BoreddySR</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanasekaran, Dhorali</au><au>Madrhavan, Karunakaran</au><au>Tsibouklis, John</au><au>Reddy, BoreddySR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocomposites based on copolymers of fluorinated imide and polyhedral oligomeric silsesquioxane macromonomer: microstructure and morphology studies</atitle><jtitle>Polymer international</jtitle><addtitle>Polym. Int</addtitle><date>2013-02</date><risdate>2013</risdate><volume>62</volume><issue>2</issue><spage>190</spage><epage>195</epage><pages>190-195</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><coden>PLYIEI</coden><abstract>Towards the development of copolymeric nanocomposites, N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide (TFI) monomer and a macromonomer of polyhedral oligomeric silsesquioxane (POSS) were synthesized. Ring‐opening metathesis polymerization to copolymerization of specified proportions of the two co‐monomers was carried out. All the monomers and polymers were characterized using Fourier transform IR analysis and 1H and 29Si NMR. Gel permeation chromatography shows that copolymeric nanocomposites have a lower average molar mass than a homopolymer of TFI (HTFI). TGA shows that the thermal stability of the copolymer is inversely proportional to the proportion of POSS units. DSC studies have demonstrated that the glass transition temperature (Tg) of a nanocomposite possessing 25 wt% POSS is at a higher temperature (180 °C) than that of HTFI (175 °C). Transmission electron microscopy and AFM images of copolymers are consistent with the self‐assembled spherical aggregation of POSS units, while X‐ray diffraction studies have confirmed the homogeneous dispersion of the same units within the nanocomposites. © 2012 Society of Chemical Industry
Linear copolymers of N‐(POSS)‐7‐oxanorbornene‐5,6‐dicarboximide (PNDI) and N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide were prepared through ring opening metathesis polymerization. The POSS incorporated nanocomposites showed a self‐assembled and ordered structure of POSS aggregates.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/pi.4278</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-8103 |
ispartof | Polymer international, 2013-02, Vol.62 (2), p.190-195 |
issn | 0959-8103 1097-0126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349452234 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Agglomeration Applied sciences Composites Copolymers Dispersions Exact sciences and technology fluorinated imide Forms of application and semi-finished materials microstructure Monomers Nanocomposites Polyhedral oligomeric silsesquioxane Polymer industry, paints, wood Polymerization Technology of polymers |
title | Nanocomposites based on copolymers of fluorinated imide and polyhedral oligomeric silsesquioxane macromonomer: microstructure and morphology studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocomposites%20based%20on%20copolymers%20of%20fluorinated%20imide%20and%20polyhedral%20oligomeric%20silsesquioxane%20macromonomer:%20microstructure%20and%20morphology%20studies&rft.jtitle=Polymer%20international&rft.au=Gnanasekaran,%20Dhorali&rft.date=2013-02&rft.volume=62&rft.issue=2&rft.spage=190&rft.epage=195&rft.pages=190-195&rft.issn=0959-8103&rft.eissn=1097-0126&rft.coden=PLYIEI&rft_id=info:doi/10.1002/pi.4278&rft_dat=%3Cproquest_cross%3E2871247161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4568-4332144427335e3da2efad27f74fe4860e83bc3c50df290b653eee910b777da93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1271860343&rft_id=info:pmid/&rfr_iscdi=true |