Loading…

Inelastic behavior of smart recentering buckling-restrained braced frames with superelastic shape memory alloy bracing systems

Buckling-restrained braced frames are steadily replacing concentrically braced frames because buckling-restrained brace can yield without buckling when subjected to both tension and compression. Though buckling-restrained brace frames are being widely used as framing structures for construction in h...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2013-04, Vol.227 (4), p.806-818
Main Authors: Hu, Jong Wan, Choi, Dong Ho, Kim, Dong Keon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Buckling-restrained braced frames are steadily replacing concentrically braced frames because buckling-restrained brace can yield without buckling when subjected to both tension and compression. Though buckling-restrained brace frames are being widely used as framing structures for construction in high seismicity areas, it is shown that at large strains, a considerable amount of permanent deformation is produced at the support connector between the brace and the frame. This drawback can be overcome by providing recentering capabilities to the braced frame system. By applying the concept of a recentering system to the design of buckling-restrained brace frames, we developed braced frames that incorporate buckling-restrained braces with superelastic shape memory alloy end-support connectors. Owing to the recentering capability, shape memory alloy materials have been used in the place where large deformation may feasibly occur. The primary advantages of the innovative braced frames proposed herein are verified through nonlinear pushover analyses. Analytical frame models are developed to estimate theultimate and residual inter-story drifts. The analysis results suggest that buckling-restrained brace frames with superelastic shape memory alloy bracing systems are more effective in controlling residual inter-story drifts than those with conventional steel bracing systems owing to the inherent self-healing characteristics of superelastic shape memory alloys.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406212457730