Loading…

Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice

Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin-induced nephrotoxicity. Curcumin is an orange-yellow polyphenol present in curry spice and has anti-inflammatory and antioxidant effects. The purpose of this study was to determine the protective effects of curcumin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioscience and bioengineering 2013-05, Vol.115 (5), p.547-551
Main Authors: Ueki, Masaaki, Ueno, Masaki, Morishita, Jun, Maekawa, Nobuhiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin-induced nephrotoxicity. Curcumin is an orange-yellow polyphenol present in curry spice and has anti-inflammatory and antioxidant effects. The purpose of this study was to determine the protective effects of curcumin on cisplatin-induced nephrotoxicity. Mice were randomly divided into four groups: control, cisplatin, cisplatin + curcumin and curcumin. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without curcumin treatment (100 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). Serum and renal tumor necrosis factor (TNF)-alpha and renal monocyte chemoattractant protein (MCP)-1 concentrations, intercellular adhesion molecule-1 (ICAM-1) mRNA expression in kidney, renal function and histological changes were determined 72 h after cisplatin injection. Serum TNF-alpha concentration in the cisplatin + curcumin group significantly decreased compared with that in the cisplatin group. Renal TNF-alpha and MCP-1 concentrations and ICAM-1 mRNA expression in kidney in the cisplatin + curcumin group also significantly decreased compared with those in the cisplatin group. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis scores were attenuated by curcumin treatment. These results indicate that curcumin acts to reduce cisplatin-induced nephrotoxicity through its anti-inflammatory effects. Thus, curcumin may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2012.11.007