Loading…

Capsiate improves glucose metabolism by improving insulin sensitivity better than capsaicin in diabetic rats

Red peppers and red pepper paste are reported to have anti-obesity, analgesic and anti-inflammatory effects in animals and humans due to the capsaicin in red pepper. We investigated whether consuming capsaicin and capsiate, a nonpungent capsaicin analogue, modifies glucose-stimulated insulin secreti...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of nutritional biochemistry 2013-06, Vol.24 (6), p.1078-1085
Main Authors: Kwon, Dae Young, Kim, Youg Sup, Ryu, Shi Yong, Cha, Mi-Ran, Yon, Gyu Hwan, Yang, Hye Jeong, Kim, Min Jung, Kang, Sunna, Park, Sunmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Red peppers and red pepper paste are reported to have anti-obesity, analgesic and anti-inflammatory effects in animals and humans due to the capsaicin in red pepper. We investigated whether consuming capsaicin and capsiate, a nonpungent capsaicin analogue, modifies glucose-stimulated insulin secretion, pancreatic β-cell survival and insulin sensitivity in 90% pancreatectomized (Px) diabetic rats, a moderate and non-obese type 2 diabetic animal model. Px diabetic rats were divided into 3 treatment groups: 1) capsaicin (Px-CPA), 2) capsiate (Px-CPI) or 3) dextrose (Px-CON) and provided high fat diets (40 energy % fat) containing assigned components (0.025% capsaicin, capsiate, or dextrose) for 8 weeks. Both capsaicin and capsiate reduced body weight gain, visceral fat accumulation, serum leptin levels and improved glucose tolerance without modulating energy intake in diabetic rats. In comparison to the control, both capsaicin and capsiate potentiated first and second and phase insulin secretion during hyperglycemic clamp. Both also increased β-cell mass by increasing proliferation and decreasing apoptosis of β-cells by potentiating insulin/IGF-1 signaling. However, only capsiate enhanced hepatic insulin sensitivity during euglycemic hyperinuslinemic clamp. Capsiate reduced hepatic glucose output and increased triglyceride accumulation in the hyperinsulinemic state and capsiate alone significantly increased glycogen storage. This was related to enhanced pAkt→PEPCK and pAMPK signaling. Capsaicin and capsiate reduced triglyceride storage through activating pAMPK. In conclusion, capsaicin and capsiate improve glucose homeostasis but they differently enhance insulin sensitivity in the liver, insulin secretion patterns, and islet morphometry in diabetic rats. Capsiate has better anti-diabetic actions than capsaicin.
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2012.08.006