Loading…

Strong thermomechanical squeezing via weak measurement

We experimentally surpass the 3 dB limit to steady-state parametric squeezing of a mechanical oscillator. The localization of an atomic force microscope cantilever, achieved by optimal estimation, is enhanced by up to 6.2 dB in one position quadrature when a detuned parametric drive is used. This sq...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2013-05, Vol.110 (18), p.184301-184301, Article 184301
Main Authors: Szorkovszky, A, Brawley, G A, Doherty, A C, Bowen, W P
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We experimentally surpass the 3 dB limit to steady-state parametric squeezing of a mechanical oscillator. The localization of an atomic force microscope cantilever, achieved by optimal estimation, is enhanced by up to 6.2 dB in one position quadrature when a detuned parametric drive is used. This squeezing is, in principle, limited only by the oscillator Q factor. Used on low temperature, high frequency oscillators, this technique provides a pathway to achieve robust quantum squeezing below the zero-point motion. Broadly, our results demonstrate that control systems engineering can overcome well established limits in applications of nonlinear processes. Conversely, by localizing the mechanical position to better than the measurement precision of our apparatus, they demonstrate the usefulness of mechanical nonlinearities in control applications.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.110.184301