Loading…
Carbon Xerogel Microspheres and Monoliths from Resorcinol–Formaldehyde Mixtures with Varying Dilution Ratios: Preparation, Surface Characteristics, and Electrochemical Double-Layer Capacitances
Carbon xerogels in the form of microspheres and monoliths were obtained from the sol–gel polymerization of resorcinol and formaldehyde in the presence of potassium carbonate as catalyst, using water as solvent and two different molar dilution ratios. The objectives of this study were as follows: to...
Saved in:
Published in: | Langmuir 2013-05, Vol.29 (20), p.6166-6173 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon xerogels in the form of microspheres and monoliths were obtained from the sol–gel polymerization of resorcinol and formaldehyde in the presence of potassium carbonate as catalyst, using water as solvent and two different molar dilution ratios. The objectives of this study were as follows: to investigate the effect of the dilution ratio, polymerization reaction time, and temperature on the rheological properties of the sols used to prepare the carbon xerogel microspheres and monoliths; and to determine the influence of their preparation methods and shapes on their surface characteristics and electrochemical double-layer (EDL) capacitance. An increase in the molar dilution ratio produced a decrease in the apparent activation energy of the sol–gel transition. Carbon xerogel microspheres were steam-activated at different burnoff percentages. The morphology, surface area, porosity, and surface chemistry of samples were determined. The main difference between the carbon xerogel microspheres and monoliths was that the latter are largely mesoporous. Better electrochemical behavior was shown by carbon xerogels in monolith than in microsphere form, but higher gravimetric and volumetric capacitances were found in activated carbon xerogel microspheres than in carbon xerogel monoliths. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la4007422 |