Loading…
Vesicle coats: structure, function, and general principles of assembly
The transport of proteins and lipids between distinct cellular compartments is conducted by coated vesicles. These vesicles are formed by the self-assembly of coat proteins on a membrane, leading to collection of the vesicle cargo and membrane bending to form a bud. Scission at the bud neck releases...
Saved in:
Published in: | Trends in cell biology 2013-06, Vol.23 (6), p.279-288 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The transport of proteins and lipids between distinct cellular compartments is conducted by coated vesicles. These vesicles are formed by the self-assembly of coat proteins on a membrane, leading to collection of the vesicle cargo and membrane bending to form a bud. Scission at the bud neck releases the vesicle. X-ray crystallography and electron microscopy (EM) have recently generated models of isolated coat components and assembled coats. Here, we review these data to present a structural overview of the three main coats: clathrin, COPII, and COPI. The three coats have similar function, common ancestry, and structural similarities, but exhibit fundamental differences in structure and assembly. We describe the implications of structural similarities and differences for understanding the function, assembly principles, and evolution of vesicle coats. |
---|---|
ISSN: | 0962-8924 1879-3088 |
DOI: | 10.1016/j.tcb.2013.01.005 |