Loading…
Ocean acidification and warming scenarios increase microbioerosion of coral skeletons
Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of c...
Saved in:
Published in: | Global change biology 2013-06, Vol.19 (6), p.1919-1929 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863 |
---|---|
cites | cdi_FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863 |
container_end_page | 1929 |
container_issue | 6 |
container_start_page | 1919 |
container_title | Global change biology |
container_volume | 19 |
creator | Reyes-Nivia, Catalina Diaz-Pulido, Guillermo Kline, David Guldberg, Ove-Hoegh Dove, Sophie |
description | Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite |
doi_str_mv | 10.1111/gcb.12158 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1356930084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1348498607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863</originalsourceid><addsrcrecordid>eNqN0d1LHDEQAPAgFrXWh_4DZUEK7cNqvjf3aI96FqVSqBR8CbPZWYnuJprcYf3vm-2dFgqF5iUf_DKTyRDyltEjVsbxjWuPGGfKbJE9JrSquTR6e1orWTPKxC55nfMtpVRwqnfILheKKjoTe-Tq0iGECpzvfO8dLH0su9BVj5BGH26q7DBA8jFXPriEkLEavUux9RFTzBOPfeVigqHKdzjgMob8hrzqYch4sJn3ydXp5-_zs_ricvFlfnJRO8WpqZWhMwNApUPWNT00AjjvFaOdmo5RKg0GO8cZNLxzTrBWtsCc0k5jKVHskw_ruPcpPqwwL-3oy4OHAQLGVbblA_RMUGrkf1Bp5Mxo2hR6-Be9jasUSiGTaqQShquiPq5V-YycE_b2PvkR0pNl1E5tsaUt9ndbin23ibhqR-xe5HMfCni_AZAdDH2C4Hz-4xqhjeSTO167Rz_g078z2sX803Pqen3D5yX-fLkB6c7qRjTK_vi6sKeL829UnF_bM_EL4bCxxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347453825</pqid></control><display><type>article</type><title>Ocean acidification and warming scenarios increase microbioerosion of coral skeletons</title><source>Wiley</source><creator>Reyes-Nivia, Catalina ; Diaz-Pulido, Guillermo ; Kline, David ; Guldberg, Ove-Hoegh ; Dove, Sophie</creator><creatorcontrib>Reyes-Nivia, Catalina ; Diaz-Pulido, Guillermo ; Kline, David ; Guldberg, Ove-Hoegh ; Dove, Sophie</creatorcontrib><description>Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12158</identifier><identifier>PMID: 23505093</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acids - chemistry ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Anthozoa - metabolism ; Biological and medical sciences ; Climate change ; Cnidaria. Ctenaria ; Coral reefs ; coral skeleton ; dissolution ; endolithic algae ; Fundamental and applied biological sciences. Psychology ; General aspects ; Global warming ; Hydrogen-Ion Concentration ; Invertebrates ; Isopora ; Marine conservation ; Marine ecology ; Microalgae - metabolism ; microbioerosion ; ocean acidification and warming ; Oceans and Seas ; Ostreobium ; Porites ; Porites cylindrica</subject><ispartof>Global change biology, 2013-06, Vol.19 (6), p.1919-1929</ispartof><rights>2013 Blackwell Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2013 Blackwell Publishing Ltd.</rights><rights>Copyright © 2013 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863</citedby><cites>FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27368423$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23505093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyes-Nivia, Catalina</creatorcontrib><creatorcontrib>Diaz-Pulido, Guillermo</creatorcontrib><creatorcontrib>Kline, David</creatorcontrib><creatorcontrib>Guldberg, Ove-Hoegh</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><title>Ocean acidification and warming scenarios increase microbioerosion of coral skeletons</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.</description><subject>Acids - chemistry</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Anthozoa - metabolism</subject><subject>Biological and medical sciences</subject><subject>Climate change</subject><subject>Cnidaria. Ctenaria</subject><subject>Coral reefs</subject><subject>coral skeleton</subject><subject>dissolution</subject><subject>endolithic algae</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Global warming</subject><subject>Hydrogen-Ion Concentration</subject><subject>Invertebrates</subject><subject>Isopora</subject><subject>Marine conservation</subject><subject>Marine ecology</subject><subject>Microalgae - metabolism</subject><subject>microbioerosion</subject><subject>ocean acidification and warming</subject><subject>Oceans and Seas</subject><subject>Ostreobium</subject><subject>Porites</subject><subject>Porites cylindrica</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0d1LHDEQAPAgFrXWh_4DZUEK7cNqvjf3aI96FqVSqBR8CbPZWYnuJprcYf3vm-2dFgqF5iUf_DKTyRDyltEjVsbxjWuPGGfKbJE9JrSquTR6e1orWTPKxC55nfMtpVRwqnfILheKKjoTe-Tq0iGECpzvfO8dLH0su9BVj5BGH26q7DBA8jFXPriEkLEavUux9RFTzBOPfeVigqHKdzjgMob8hrzqYch4sJn3ydXp5-_zs_ricvFlfnJRO8WpqZWhMwNApUPWNT00AjjvFaOdmo5RKg0GO8cZNLxzTrBWtsCc0k5jKVHskw_ruPcpPqwwL-3oy4OHAQLGVbblA_RMUGrkf1Bp5Mxo2hR6-Be9jasUSiGTaqQShquiPq5V-YycE_b2PvkR0pNl1E5tsaUt9ndbin23ibhqR-xe5HMfCni_AZAdDH2C4Hz-4xqhjeSTO167Rz_g078z2sX803Pqen3D5yX-fLkB6c7qRjTK_vi6sKeL829UnF_bM_EL4bCxxg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Reyes-Nivia, Catalina</creator><creator>Diaz-Pulido, Guillermo</creator><creator>Kline, David</creator><creator>Guldberg, Ove-Hoegh</creator><creator>Dove, Sophie</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U6</scope><scope>8FD</scope><scope>FR3</scope><scope>H95</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201306</creationdate><title>Ocean acidification and warming scenarios increase microbioerosion of coral skeletons</title><author>Reyes-Nivia, Catalina ; Diaz-Pulido, Guillermo ; Kline, David ; Guldberg, Ove-Hoegh ; Dove, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids - chemistry</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Anthozoa - metabolism</topic><topic>Biological and medical sciences</topic><topic>Climate change</topic><topic>Cnidaria. Ctenaria</topic><topic>Coral reefs</topic><topic>coral skeleton</topic><topic>dissolution</topic><topic>endolithic algae</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Global warming</topic><topic>Hydrogen-Ion Concentration</topic><topic>Invertebrates</topic><topic>Isopora</topic><topic>Marine conservation</topic><topic>Marine ecology</topic><topic>Microalgae - metabolism</topic><topic>microbioerosion</topic><topic>ocean acidification and warming</topic><topic>Oceans and Seas</topic><topic>Ostreobium</topic><topic>Porites</topic><topic>Porites cylindrica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes-Nivia, Catalina</creatorcontrib><creatorcontrib>Diaz-Pulido, Guillermo</creatorcontrib><creatorcontrib>Kline, David</creatorcontrib><creatorcontrib>Guldberg, Ove-Hoegh</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes-Nivia, Catalina</au><au>Diaz-Pulido, Guillermo</au><au>Kline, David</au><au>Guldberg, Ove-Hoegh</au><au>Dove, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean acidification and warming scenarios increase microbioerosion of coral skeletons</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-06</date><risdate>2013</risdate><volume>19</volume><issue>6</issue><spage>1919</spage><epage>1929</epage><pages>1919-1929</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23505093</pmid><doi>10.1111/gcb.12158</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2013-06, Vol.19 (6), p.1919-1929 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_1356930084 |
source | Wiley |
subjects | Acids - chemistry Animal and plant ecology Animal, plant and microbial ecology Animals Anthozoa - metabolism Biological and medical sciences Climate change Cnidaria. Ctenaria Coral reefs coral skeleton dissolution endolithic algae Fundamental and applied biological sciences. Psychology General aspects Global warming Hydrogen-Ion Concentration Invertebrates Isopora Marine conservation Marine ecology Microalgae - metabolism microbioerosion ocean acidification and warming Oceans and Seas Ostreobium Porites Porites cylindrica |
title | Ocean acidification and warming scenarios increase microbioerosion of coral skeletons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20acidification%20and%20warming%20scenarios%20increase%20microbioerosion%20of%20coral%20skeletons&rft.jtitle=Global%20change%20biology&rft.au=Reyes-Nivia,%20Catalina&rft.date=2013-06&rft.volume=19&rft.issue=6&rft.spage=1919&rft.epage=1929&rft.pages=1919-1929&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12158&rft_dat=%3Cproquest_cross%3E1348498607%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1347453825&rft_id=info:pmid/23505093&rfr_iscdi=true |