Loading…

Ocean acidification and warming scenarios increase microbioerosion of coral skeletons

Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of c...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2013-06, Vol.19 (6), p.1919-1929
Main Authors: Reyes-Nivia, Catalina, Diaz-Pulido, Guillermo, Kline, David, Guldberg, Ove-Hoegh, Dove, Sophie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863
cites cdi_FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863
container_end_page 1929
container_issue 6
container_start_page 1919
container_title Global change biology
container_volume 19
creator Reyes-Nivia, Catalina
Diaz-Pulido, Guillermo
Kline, David
Guldberg, Ove-Hoegh
Dove, Sophie
description Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite
doi_str_mv 10.1111/gcb.12158
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1356930084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1348498607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863</originalsourceid><addsrcrecordid>eNqN0d1LHDEQAPAgFrXWh_4DZUEK7cNqvjf3aI96FqVSqBR8CbPZWYnuJprcYf3vm-2dFgqF5iUf_DKTyRDyltEjVsbxjWuPGGfKbJE9JrSquTR6e1orWTPKxC55nfMtpVRwqnfILheKKjoTe-Tq0iGECpzvfO8dLH0su9BVj5BGH26q7DBA8jFXPriEkLEavUux9RFTzBOPfeVigqHKdzjgMob8hrzqYch4sJn3ydXp5-_zs_ricvFlfnJRO8WpqZWhMwNApUPWNT00AjjvFaOdmo5RKg0GO8cZNLxzTrBWtsCc0k5jKVHskw_ruPcpPqwwL-3oy4OHAQLGVbblA_RMUGrkf1Bp5Mxo2hR6-Be9jasUSiGTaqQShquiPq5V-YycE_b2PvkR0pNl1E5tsaUt9ndbin23ibhqR-xe5HMfCni_AZAdDH2C4Hz-4xqhjeSTO167Rz_g078z2sX803Pqen3D5yX-fLkB6c7qRjTK_vi6sKeL829UnF_bM_EL4bCxxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347453825</pqid></control><display><type>article</type><title>Ocean acidification and warming scenarios increase microbioerosion of coral skeletons</title><source>Wiley</source><creator>Reyes-Nivia, Catalina ; Diaz-Pulido, Guillermo ; Kline, David ; Guldberg, Ove-Hoegh ; Dove, Sophie</creator><creatorcontrib>Reyes-Nivia, Catalina ; Diaz-Pulido, Guillermo ; Kline, David ; Guldberg, Ove-Hoegh ; Dove, Sophie</creatorcontrib><description>Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite &lt;1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12158</identifier><identifier>PMID: 23505093</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acids - chemistry ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Anthozoa - metabolism ; Biological and medical sciences ; Climate change ; Cnidaria. Ctenaria ; Coral reefs ; coral skeleton ; dissolution ; endolithic algae ; Fundamental and applied biological sciences. Psychology ; General aspects ; Global warming ; Hydrogen-Ion Concentration ; Invertebrates ; Isopora ; Marine conservation ; Marine ecology ; Microalgae - metabolism ; microbioerosion ; ocean acidification and warming ; Oceans and Seas ; Ostreobium ; Porites ; Porites cylindrica</subject><ispartof>Global change biology, 2013-06, Vol.19 (6), p.1919-1929</ispartof><rights>2013 Blackwell Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2013 Blackwell Publishing Ltd.</rights><rights>Copyright © 2013 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863</citedby><cites>FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27368423$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23505093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyes-Nivia, Catalina</creatorcontrib><creatorcontrib>Diaz-Pulido, Guillermo</creatorcontrib><creatorcontrib>Kline, David</creatorcontrib><creatorcontrib>Guldberg, Ove-Hoegh</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><title>Ocean acidification and warming scenarios increase microbioerosion of coral skeletons</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite &lt;1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.</description><subject>Acids - chemistry</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Anthozoa - metabolism</subject><subject>Biological and medical sciences</subject><subject>Climate change</subject><subject>Cnidaria. Ctenaria</subject><subject>Coral reefs</subject><subject>coral skeleton</subject><subject>dissolution</subject><subject>endolithic algae</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Global warming</subject><subject>Hydrogen-Ion Concentration</subject><subject>Invertebrates</subject><subject>Isopora</subject><subject>Marine conservation</subject><subject>Marine ecology</subject><subject>Microalgae - metabolism</subject><subject>microbioerosion</subject><subject>ocean acidification and warming</subject><subject>Oceans and Seas</subject><subject>Ostreobium</subject><subject>Porites</subject><subject>Porites cylindrica</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0d1LHDEQAPAgFrXWh_4DZUEK7cNqvjf3aI96FqVSqBR8CbPZWYnuJprcYf3vm-2dFgqF5iUf_DKTyRDyltEjVsbxjWuPGGfKbJE9JrSquTR6e1orWTPKxC55nfMtpVRwqnfILheKKjoTe-Tq0iGECpzvfO8dLH0su9BVj5BGH26q7DBA8jFXPriEkLEavUux9RFTzBOPfeVigqHKdzjgMob8hrzqYch4sJn3ydXp5-_zs_ricvFlfnJRO8WpqZWhMwNApUPWNT00AjjvFaOdmo5RKg0GO8cZNLxzTrBWtsCc0k5jKVHskw_ruPcpPqwwL-3oy4OHAQLGVbblA_RMUGrkf1Bp5Mxo2hR6-Be9jasUSiGTaqQShquiPq5V-YycE_b2PvkR0pNl1E5tsaUt9ndbin23ibhqR-xe5HMfCni_AZAdDH2C4Hz-4xqhjeSTO167Rz_g078z2sX803Pqen3D5yX-fLkB6c7qRjTK_vi6sKeL829UnF_bM_EL4bCxxg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Reyes-Nivia, Catalina</creator><creator>Diaz-Pulido, Guillermo</creator><creator>Kline, David</creator><creator>Guldberg, Ove-Hoegh</creator><creator>Dove, Sophie</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U6</scope><scope>8FD</scope><scope>FR3</scope><scope>H95</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>201306</creationdate><title>Ocean acidification and warming scenarios increase microbioerosion of coral skeletons</title><author>Reyes-Nivia, Catalina ; Diaz-Pulido, Guillermo ; Kline, David ; Guldberg, Ove-Hoegh ; Dove, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids - chemistry</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Anthozoa - metabolism</topic><topic>Biological and medical sciences</topic><topic>Climate change</topic><topic>Cnidaria. Ctenaria</topic><topic>Coral reefs</topic><topic>coral skeleton</topic><topic>dissolution</topic><topic>endolithic algae</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Global warming</topic><topic>Hydrogen-Ion Concentration</topic><topic>Invertebrates</topic><topic>Isopora</topic><topic>Marine conservation</topic><topic>Marine ecology</topic><topic>Microalgae - metabolism</topic><topic>microbioerosion</topic><topic>ocean acidification and warming</topic><topic>Oceans and Seas</topic><topic>Ostreobium</topic><topic>Porites</topic><topic>Porites cylindrica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes-Nivia, Catalina</creatorcontrib><creatorcontrib>Diaz-Pulido, Guillermo</creatorcontrib><creatorcontrib>Kline, David</creatorcontrib><creatorcontrib>Guldberg, Ove-Hoegh</creatorcontrib><creatorcontrib>Dove, Sophie</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes-Nivia, Catalina</au><au>Diaz-Pulido, Guillermo</au><au>Kline, David</au><au>Guldberg, Ove-Hoegh</au><au>Dove, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean acidification and warming scenarios increase microbioerosion of coral skeletons</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-06</date><risdate>2013</risdate><volume>19</volume><issue>6</issue><spage>1919</spage><epage>1929</epage><pages>1919-1929</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite &lt;1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23505093</pmid><doi>10.1111/gcb.12158</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2013-06, Vol.19 (6), p.1919-1929
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1356930084
source Wiley
subjects Acids - chemistry
Animal and plant ecology
Animal, plant and microbial ecology
Animals
Anthozoa - metabolism
Biological and medical sciences
Climate change
Cnidaria. Ctenaria
Coral reefs
coral skeleton
dissolution
endolithic algae
Fundamental and applied biological sciences. Psychology
General aspects
Global warming
Hydrogen-Ion Concentration
Invertebrates
Isopora
Marine conservation
Marine ecology
Microalgae - metabolism
microbioerosion
ocean acidification and warming
Oceans and Seas
Ostreobium
Porites
Porites cylindrica
title Ocean acidification and warming scenarios increase microbioerosion of coral skeletons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20acidification%20and%20warming%20scenarios%20increase%20microbioerosion%20of%20coral%20skeletons&rft.jtitle=Global%20change%20biology&rft.au=Reyes-Nivia,%20Catalina&rft.date=2013-06&rft.volume=19&rft.issue=6&rft.spage=1919&rft.epage=1929&rft.pages=1919-1929&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12158&rft_dat=%3Cproquest_cross%3E1348498607%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5208-58098aa04ce1d7fa73a22f510d58aa0e456a8edc21a72dcc31b4ba1c56c6e4863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1347453825&rft_id=info:pmid/23505093&rfr_iscdi=true