Loading…

Autoantibody-dependent and autoantibody-independent roles for B cells in systemic lupus erythematosus: Past, present, and future

It has long been known that B cells produce autoantibodies and, thereby, contribute to the pathogenesis of many autoimmune diseases. Systemic lupus erythematosus (SLE), a prototypic systemic autoimmune disorder, is characterized by high-circulating autoantibody titers and immune-complex deposition t...

Full description

Saved in:
Bibliographic Details
Published in:Autoimmunity (Chur, Switzerland) Switzerland), 2010-02, Vol.43 (1), p.84-97
Main Authors: Jacob, Noam, Stohl, William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has long been known that B cells produce autoantibodies and, thereby, contribute to the pathogenesis of many autoimmune diseases. Systemic lupus erythematosus (SLE), a prototypic systemic autoimmune disorder, is characterized by high-circulating autoantibody titers and immune-complex deposition that can trigger inflammatory damage in multiple organs/organ systems. Although the interest in B cells in SLE has historically focused on their autoantibody production, we now appreciate that B cells have multiple autoantibody-independent roles in SLE as well. B cells can efficiently present antigen and activate T cells, they can augment T cell activation through co-stimulatory interactions, and they can produce numerous cytokines which affect inflammation, lymphogenesis, and immune regulation. Not surprisingly, B cells have become attractive therapeutic targets in SLE. With these points in mind, this review will focus on the autoantibody-dependent and autoantibody-independent roles for B cells in SLE and on therapeutic approaches that target B cells.
ISSN:0891-6934
1607-842X
DOI:10.3109/08916930903374600