Loading…

Effect of W–TiO2 composite to control microbiologically influenced corrosion on galvanized steel

Microorganisms tend to colonize on solid metal/alloy surface in natural environment leading to loss of utility. Microbiologically influenced corrosion or biocorrosion usually increases the corrosion rate of steel articles due to the presence of bacteria that accelerates the anodic and/or cathodic co...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2013-06, Vol.97 (12), p.5615-5625
Main Authors: Basheer, Rubina, Ganga, G., Chandran, R. Krishna, Nair, G. M., Nair, Meena B., Shibli, S. M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-ac0864bef9694a203d3ae9f20e80de926eff29f2984e518f4aaaa42a243bfa753
cites cdi_FETCH-LOGICAL-c409t-ac0864bef9694a203d3ae9f20e80de926eff29f2984e518f4aaaa42a243bfa753
container_end_page 5625
container_issue 12
container_start_page 5615
container_title Applied microbiology and biotechnology
container_volume 97
creator Basheer, Rubina
Ganga, G.
Chandran, R. Krishna
Nair, G. M.
Nair, Meena B.
Shibli, S. M. A.
description Microorganisms tend to colonize on solid metal/alloy surface in natural environment leading to loss of utility. Microbiologically influenced corrosion or biocorrosion usually increases the corrosion rate of steel articles due to the presence of bacteria that accelerates the anodic and/or cathodic corrosion reaction rate without any significant change in the corrosion mechanism. An attempt was made in the present study to protect hot-dip galvanized steel from such attack of biocorrosion by means of chemically modifying the zinc coating. W–TiO 2 composite was synthesized and incorporated into the zinc bath during the hot-dipping process. The surface morphology and elemental composition of the hot-dip galvanized coupons were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The antifouling characteristics of the coatings were analyzed in three different solutions including distilled water, seawater, and seawater containing biofilm scrapings under immersed conditions. Apart from electrochemical studies, the biocidal effect of the composite was evaluated by analyzing the extent of bacterial growth due to the presence and absence of the composite based on the analysis of total extracellular polymeric substance and total biomass using microtiter plate assay. The biofilm-forming bacteria formed on the surface of the coatings was cultured on Zobell Marine Agar plates and studied. The composite was found to be effective in controlling the growth of bacteria and formation of biofilm thereafter.
doi_str_mv 10.1007/s00253-012-4389-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1356954446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2981850521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ac0864bef9694a203d3ae9f20e80de926eff29f2984e518f4aaaa42a243bfa753</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMoOl4ewI0U3Lip5tomSxFvILhRXIa0czJkSJsxaQVd-Q6-oU9ihhlFBEMgnOT7_yTnR-iQ4FOCcX2WMKaClZjQkjOpSrKBJoQzWuKK8E00waQWZS2U3EG7Kc1xBmVVbaMdSpVkQtUT1FxaC-1QBFs8fb5_PLh7WrShW4TkBiiGkIt-iMEXnWtjaFzwYeZa4_1r4XrrR-hbmGYoxqwIfZHnzPgX07u3vJ8GAL-PtqzxCQ7W6x56vLp8uLgp7-6vby_O78qWYzWUpsWy4g1YVSluKGZTZkBZikHiKShagbU010pyEERabvLg1FDOGmtqwfbQycp3EcPzCGnQnUsteG96CGPShIlKCc55ldHjP-g8jLHPr1tSQtaCEpIpsqLyz1OKYPUius7EV02wXgagVwHo3Fe9DEAvNUdr57HpYPqj-O54BugKSPmon0H8dfW_rl_poJI6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355875211</pqid></control><display><type>article</type><title>Effect of W–TiO2 composite to control microbiologically influenced corrosion on galvanized steel</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Basheer, Rubina ; Ganga, G. ; Chandran, R. Krishna ; Nair, G. M. ; Nair, Meena B. ; Shibli, S. M. A.</creator><creatorcontrib>Basheer, Rubina ; Ganga, G. ; Chandran, R. Krishna ; Nair, G. M. ; Nair, Meena B. ; Shibli, S. M. A.</creatorcontrib><description>Microorganisms tend to colonize on solid metal/alloy surface in natural environment leading to loss of utility. Microbiologically influenced corrosion or biocorrosion usually increases the corrosion rate of steel articles due to the presence of bacteria that accelerates the anodic and/or cathodic corrosion reaction rate without any significant change in the corrosion mechanism. An attempt was made in the present study to protect hot-dip galvanized steel from such attack of biocorrosion by means of chemically modifying the zinc coating. W–TiO 2 composite was synthesized and incorporated into the zinc bath during the hot-dipping process. The surface morphology and elemental composition of the hot-dip galvanized coupons were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The antifouling characteristics of the coatings were analyzed in three different solutions including distilled water, seawater, and seawater containing biofilm scrapings under immersed conditions. Apart from electrochemical studies, the biocidal effect of the composite was evaluated by analyzing the extent of bacterial growth due to the presence and absence of the composite based on the analysis of total extracellular polymeric substance and total biomass using microtiter plate assay. The biofilm-forming bacteria formed on the surface of the coatings was cultured on Zobell Marine Agar plates and studied. The composite was found to be effective in controlling the growth of bacteria and formation of biofilm thereafter.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-012-4389-1</identifier><identifier>PMID: 22983597</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Alloys - chemistry ; Alloys - pharmacology ; Analysis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antifouling substances ; Bacteria ; Bacteria - drug effects ; Bacteria - growth &amp; development ; Bacteria - metabolism ; Bacterial Physiological Phenomena ; Bacteriological Techniques ; Biofilms ; Biofilms - drug effects ; Biofilms - growth &amp; development ; Biomedical and Life Sciences ; Biotechnology ; Cathodic corrosion ; Chemical analysis ; Chemical composition ; Corrosion ; Distilled water ; Electrochemistry ; Environmental Biotechnology ; Galvanized steel ; Life Sciences ; Metal oxides ; Metals ; Microbial corrosion ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Microscopy, Electron, Scanning ; Natural environment ; Phenols ; Plating ; Radiation ; Scanning electron microscopy ; Seawater ; Spectrometry, X-Ray Emission ; Steel ; Studies ; Titanium - chemistry ; Titanium - pharmacology ; Titanium dioxide ; Tungsten - chemistry ; Tungsten - pharmacology ; Water analysis ; X-ray spectroscopy ; Zinc</subject><ispartof>Applied microbiology and biotechnology, 2013-06, Vol.97 (12), p.5615-5625</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ac0864bef9694a203d3ae9f20e80de926eff29f2984e518f4aaaa42a243bfa753</citedby><cites>FETCH-LOGICAL-c409t-ac0864bef9694a203d3ae9f20e80de926eff29f2984e518f4aaaa42a243bfa753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1355875211/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1355875211?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22983597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basheer, Rubina</creatorcontrib><creatorcontrib>Ganga, G.</creatorcontrib><creatorcontrib>Chandran, R. Krishna</creatorcontrib><creatorcontrib>Nair, G. M.</creatorcontrib><creatorcontrib>Nair, Meena B.</creatorcontrib><creatorcontrib>Shibli, S. M. A.</creatorcontrib><title>Effect of W–TiO2 composite to control microbiologically influenced corrosion on galvanized steel</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Microorganisms tend to colonize on solid metal/alloy surface in natural environment leading to loss of utility. Microbiologically influenced corrosion or biocorrosion usually increases the corrosion rate of steel articles due to the presence of bacteria that accelerates the anodic and/or cathodic corrosion reaction rate without any significant change in the corrosion mechanism. An attempt was made in the present study to protect hot-dip galvanized steel from such attack of biocorrosion by means of chemically modifying the zinc coating. W–TiO 2 composite was synthesized and incorporated into the zinc bath during the hot-dipping process. The surface morphology and elemental composition of the hot-dip galvanized coupons were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The antifouling characteristics of the coatings were analyzed in three different solutions including distilled water, seawater, and seawater containing biofilm scrapings under immersed conditions. Apart from electrochemical studies, the biocidal effect of the composite was evaluated by analyzing the extent of bacterial growth due to the presence and absence of the composite based on the analysis of total extracellular polymeric substance and total biomass using microtiter plate assay. The biofilm-forming bacteria formed on the surface of the coatings was cultured on Zobell Marine Agar plates and studied. The composite was found to be effective in controlling the growth of bacteria and formation of biofilm thereafter.</description><subject>Alloys - chemistry</subject><subject>Alloys - pharmacology</subject><subject>Analysis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antifouling substances</subject><subject>Bacteria</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - growth &amp; development</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacteriological Techniques</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth &amp; development</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cathodic corrosion</subject><subject>Chemical analysis</subject><subject>Chemical composition</subject><subject>Corrosion</subject><subject>Distilled water</subject><subject>Electrochemistry</subject><subject>Environmental Biotechnology</subject><subject>Galvanized steel</subject><subject>Life Sciences</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Microbial corrosion</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Microscopy, Electron, Scanning</subject><subject>Natural environment</subject><subject>Phenols</subject><subject>Plating</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>Spectrometry, X-Ray Emission</subject><subject>Steel</subject><subject>Studies</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>Titanium dioxide</subject><subject>Tungsten - chemistry</subject><subject>Tungsten - pharmacology</subject><subject>Water analysis</subject><subject>X-ray spectroscopy</subject><subject>Zinc</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kctKxDAUhoMoOl4ewI0U3Lip5tomSxFvILhRXIa0czJkSJsxaQVd-Q6-oU9ihhlFBEMgnOT7_yTnR-iQ4FOCcX2WMKaClZjQkjOpSrKBJoQzWuKK8E00waQWZS2U3EG7Kc1xBmVVbaMdSpVkQtUT1FxaC-1QBFs8fb5_PLh7WrShW4TkBiiGkIt-iMEXnWtjaFzwYeZa4_1r4XrrR-hbmGYoxqwIfZHnzPgX07u3vJ8GAL-PtqzxCQ7W6x56vLp8uLgp7-6vby_O78qWYzWUpsWy4g1YVSluKGZTZkBZikHiKShagbU010pyEERabvLg1FDOGmtqwfbQycp3EcPzCGnQnUsteG96CGPShIlKCc55ldHjP-g8jLHPr1tSQtaCEpIpsqLyz1OKYPUius7EV02wXgagVwHo3Fe9DEAvNUdr57HpYPqj-O54BugKSPmon0H8dfW_rl_poJI6</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Basheer, Rubina</creator><creator>Ganga, G.</creator><creator>Chandran, R. Krishna</creator><creator>Nair, G. M.</creator><creator>Nair, Meena B.</creator><creator>Shibli, S. M. A.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130601</creationdate><title>Effect of W–TiO2 composite to control microbiologically influenced corrosion on galvanized steel</title><author>Basheer, Rubina ; Ganga, G. ; Chandran, R. Krishna ; Nair, G. M. ; Nair, Meena B. ; Shibli, S. M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ac0864bef9694a203d3ae9f20e80de926eff29f2984e518f4aaaa42a243bfa753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alloys - chemistry</topic><topic>Alloys - pharmacology</topic><topic>Analysis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antifouling substances</topic><topic>Bacteria</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - growth &amp; development</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacteriological Techniques</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth &amp; development</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cathodic corrosion</topic><topic>Chemical analysis</topic><topic>Chemical composition</topic><topic>Corrosion</topic><topic>Distilled water</topic><topic>Electrochemistry</topic><topic>Environmental Biotechnology</topic><topic>Galvanized steel</topic><topic>Life Sciences</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Microbial corrosion</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Microscopy, Electron, Scanning</topic><topic>Natural environment</topic><topic>Phenols</topic><topic>Plating</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>Spectrometry, X-Ray Emission</topic><topic>Steel</topic><topic>Studies</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>Titanium dioxide</topic><topic>Tungsten - chemistry</topic><topic>Tungsten - pharmacology</topic><topic>Water analysis</topic><topic>X-ray spectroscopy</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basheer, Rubina</creatorcontrib><creatorcontrib>Ganga, G.</creatorcontrib><creatorcontrib>Chandran, R. Krishna</creatorcontrib><creatorcontrib>Nair, G. M.</creatorcontrib><creatorcontrib>Nair, Meena B.</creatorcontrib><creatorcontrib>Shibli, S. M. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basheer, Rubina</au><au>Ganga, G.</au><au>Chandran, R. Krishna</au><au>Nair, G. M.</au><au>Nair, Meena B.</au><au>Shibli, S. M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of W–TiO2 composite to control microbiologically influenced corrosion on galvanized steel</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>97</volume><issue>12</issue><spage>5615</spage><epage>5625</epage><pages>5615-5625</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Microorganisms tend to colonize on solid metal/alloy surface in natural environment leading to loss of utility. Microbiologically influenced corrosion or biocorrosion usually increases the corrosion rate of steel articles due to the presence of bacteria that accelerates the anodic and/or cathodic corrosion reaction rate without any significant change in the corrosion mechanism. An attempt was made in the present study to protect hot-dip galvanized steel from such attack of biocorrosion by means of chemically modifying the zinc coating. W–TiO 2 composite was synthesized and incorporated into the zinc bath during the hot-dipping process. The surface morphology and elemental composition of the hot-dip galvanized coupons were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The antifouling characteristics of the coatings were analyzed in three different solutions including distilled water, seawater, and seawater containing biofilm scrapings under immersed conditions. Apart from electrochemical studies, the biocidal effect of the composite was evaluated by analyzing the extent of bacterial growth due to the presence and absence of the composite based on the analysis of total extracellular polymeric substance and total biomass using microtiter plate assay. The biofilm-forming bacteria formed on the surface of the coatings was cultured on Zobell Marine Agar plates and studied. The composite was found to be effective in controlling the growth of bacteria and formation of biofilm thereafter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22983597</pmid><doi>10.1007/s00253-012-4389-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2013-06, Vol.97 (12), p.5615-5625
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1356954446
source ABI/INFORM global; Springer Nature
subjects Alloys - chemistry
Alloys - pharmacology
Analysis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antifouling substances
Bacteria
Bacteria - drug effects
Bacteria - growth & development
Bacteria - metabolism
Bacterial Physiological Phenomena
Bacteriological Techniques
Biofilms
Biofilms - drug effects
Biofilms - growth & development
Biomedical and Life Sciences
Biotechnology
Cathodic corrosion
Chemical analysis
Chemical composition
Corrosion
Distilled water
Electrochemistry
Environmental Biotechnology
Galvanized steel
Life Sciences
Metal oxides
Metals
Microbial corrosion
Microbial Genetics and Genomics
Microbiology
Microorganisms
Microscopy, Electron, Scanning
Natural environment
Phenols
Plating
Radiation
Scanning electron microscopy
Seawater
Spectrometry, X-Ray Emission
Steel
Studies
Titanium - chemistry
Titanium - pharmacology
Titanium dioxide
Tungsten - chemistry
Tungsten - pharmacology
Water analysis
X-ray spectroscopy
Zinc
title Effect of W–TiO2 composite to control microbiologically influenced corrosion on galvanized steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20W%E2%80%93TiO2%20composite%20to%20control%20microbiologically%20influenced%20corrosion%20on%20galvanized%20steel&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Basheer,%20Rubina&rft.date=2013-06-01&rft.volume=97&rft.issue=12&rft.spage=5615&rft.epage=5625&rft.pages=5615-5625&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-012-4389-1&rft_dat=%3Cproquest_cross%3E2981850521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-ac0864bef9694a203d3ae9f20e80de926eff29f2984e518f4aaaa42a243bfa753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1355875211&rft_id=info:pmid/22983597&rfr_iscdi=true