Loading…
Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems
Green photosynthetic bacteria have unique light-harvesting antenna systems called chlorosomes. Chlorobaculum tepidum, a model organism of the bacteria, biosynthesized monogalactosyl- and rhamnosylgalactosyldiacylglycerides possessing a methylene-bridged palmitoleyl group characterized by a cis-subst...
Saved in:
Published in: | Bioorganic & medicinal chemistry 2013-07, Vol.21 (13), p.3689-3694 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-d24136bc28563dca2c5c7b7bf910ca7ed80509c0be95543c52eb4bd914d958d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-d24136bc28563dca2c5c7b7bf910ca7ed80509c0be95543c52eb4bd914d958d13 |
container_end_page | 3694 |
container_issue | 13 |
container_start_page | 3689 |
container_title | Bioorganic & medicinal chemistry |
container_volume | 21 |
creator | Mizoguchi, Tadashi Tsukatani, Yusuke Harada, Jiro Takasaki, Shin Yoshitomi, Taichi Tamiaki, Hitoshi |
description | Green photosynthetic bacteria have unique light-harvesting antenna systems called chlorosomes. Chlorobaculum tepidum, a model organism of the bacteria, biosynthesized monogalactosyl- and rhamnosylgalactosyldiacylglycerides possessing a methylene-bridged palmitoleyl group characterized by a cis-substituted cyclopropane ring as the dominant glycolipids of its chlorosome surface. The formation of the cyclopropane ring was chemically inhibited by supplementation of sinefungin, an analog of S-adenosyl-l-methionine, into the bacterial cultivation. The presence of the cyclopropane ring reinforced acid resistance of the light-harvesting chlorosomes and suppressed acidic demetalation (pheophytinization) of bacteriochlorophyll-c pigments constructing the core part of chlorosomes. The ring-formation would represent direct and post-synthetic modifications of chlorosome membrane properties and was tolerant of acidic environments. |
doi_str_mv | 10.1016/j.bmc.2013.04.030 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1364707445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968089613003568</els_id><sourcerecordid>1364707445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-d24136bc28563dca2c5c7b7bf910ca7ed80509c0be95543c52eb4bd914d958d13</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEotPCA7ABL9kkXMfOj8UKjYAiVWIBXVvO9U3qURIHO1Mpr8BT42gKS1befOeT7zlZ9oZDwYHXH05FN2FRAhcFyAIEPMsOXNYyF0Lx59kBVN3m0Kr6KruO8QQApVT8ZXZVirpWXMEh-33ccPRL8IuZKQ9uHljvw2RW52fmZrY-EDO4jWwI_rxE5nuGD6MPPvqJ2DBu6Ee3OBuZiwzDGZ0Zd0MKOcsCRRdXMyPtwSEQzawzuFLYMTOvNM-GxS2uNMVX2YvejJFeP7032f2Xzz-Pt_nd96_fjp_uchRNs-a2lFzUHZZtVQuLpsQKm67pesUBTUO2hQoUQkeqqqTAqqROdlZxaVXVWi5usvcXb7r615niqicXkcYxNeDPUSe7bKCRskoov6CYDo6Ber0EN5mwaQ56n0CfdJpA7xNokDpNkDJvn_TnbiL7L_G38wS8uwC98doMwUV9_yMZKgDOOSiViI8XglINj46CjugotWhdIFy19e4_H_gDDcOi7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1364707445</pqid></control><display><type>article</type><title>Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Mizoguchi, Tadashi ; Tsukatani, Yusuke ; Harada, Jiro ; Takasaki, Shin ; Yoshitomi, Taichi ; Tamiaki, Hitoshi</creator><creatorcontrib>Mizoguchi, Tadashi ; Tsukatani, Yusuke ; Harada, Jiro ; Takasaki, Shin ; Yoshitomi, Taichi ; Tamiaki, Hitoshi</creatorcontrib><description>Green photosynthetic bacteria have unique light-harvesting antenna systems called chlorosomes. Chlorobaculum tepidum, a model organism of the bacteria, biosynthesized monogalactosyl- and rhamnosylgalactosyldiacylglycerides possessing a methylene-bridged palmitoleyl group characterized by a cis-substituted cyclopropane ring as the dominant glycolipids of its chlorosome surface. The formation of the cyclopropane ring was chemically inhibited by supplementation of sinefungin, an analog of S-adenosyl-l-methionine, into the bacterial cultivation. The presence of the cyclopropane ring reinforced acid resistance of the light-harvesting chlorosomes and suppressed acidic demetalation (pheophytinization) of bacteriochlorophyll-c pigments constructing the core part of chlorosomes. The ring-formation would represent direct and post-synthetic modifications of chlorosome membrane properties and was tolerant of acidic environments.</description><identifier>ISSN: 0968-0896</identifier><identifier>EISSN: 1464-3391</identifier><identifier>DOI: 10.1016/j.bmc.2013.04.030</identifier><identifier>PMID: 23669190</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>acid tolerance ; Acylation ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Bacteriochlorophyll ; Bacteriochlorophylls - chemistry ; Bacteriochlorophylls - metabolism ; chemistry ; Chlorobaculum tepidum ; Chlorobi - chemistry ; Chlorobi - cytology ; Chlorobi - metabolism ; Chlorobium tepidum ; Chlorosome ; Cyclopropane fatty acid ; Cyclopropanes - chemistry ; Cyclopropanes - metabolism ; Fatty Acids - chemistry ; Fatty Acids - metabolism ; Glycolipid ; glycolipids ; Glycolipids - chemistry ; Glycolipids - metabolism ; photosynthetic bacteria ; pigments ; S-adenosylmethionine</subject><ispartof>Bioorganic & medicinal chemistry, 2013-07, Vol.21 (13), p.3689-3694</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-d24136bc28563dca2c5c7b7bf910ca7ed80509c0be95543c52eb4bd914d958d13</citedby><cites>FETCH-LOGICAL-c377t-d24136bc28563dca2c5c7b7bf910ca7ed80509c0be95543c52eb4bd914d958d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23669190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mizoguchi, Tadashi</creatorcontrib><creatorcontrib>Tsukatani, Yusuke</creatorcontrib><creatorcontrib>Harada, Jiro</creatorcontrib><creatorcontrib>Takasaki, Shin</creatorcontrib><creatorcontrib>Yoshitomi, Taichi</creatorcontrib><creatorcontrib>Tamiaki, Hitoshi</creatorcontrib><title>Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems</title><title>Bioorganic & medicinal chemistry</title><addtitle>Bioorg Med Chem</addtitle><description>Green photosynthetic bacteria have unique light-harvesting antenna systems called chlorosomes. Chlorobaculum tepidum, a model organism of the bacteria, biosynthesized monogalactosyl- and rhamnosylgalactosyldiacylglycerides possessing a methylene-bridged palmitoleyl group characterized by a cis-substituted cyclopropane ring as the dominant glycolipids of its chlorosome surface. The formation of the cyclopropane ring was chemically inhibited by supplementation of sinefungin, an analog of S-adenosyl-l-methionine, into the bacterial cultivation. The presence of the cyclopropane ring reinforced acid resistance of the light-harvesting chlorosomes and suppressed acidic demetalation (pheophytinization) of bacteriochlorophyll-c pigments constructing the core part of chlorosomes. The ring-formation would represent direct and post-synthetic modifications of chlorosome membrane properties and was tolerant of acidic environments.</description><subject>acid tolerance</subject><subject>Acylation</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriochlorophyll</subject><subject>Bacteriochlorophylls - chemistry</subject><subject>Bacteriochlorophylls - metabolism</subject><subject>chemistry</subject><subject>Chlorobaculum tepidum</subject><subject>Chlorobi - chemistry</subject><subject>Chlorobi - cytology</subject><subject>Chlorobi - metabolism</subject><subject>Chlorobium tepidum</subject><subject>Chlorosome</subject><subject>Cyclopropane fatty acid</subject><subject>Cyclopropanes - chemistry</subject><subject>Cyclopropanes - metabolism</subject><subject>Fatty Acids - chemistry</subject><subject>Fatty Acids - metabolism</subject><subject>Glycolipid</subject><subject>glycolipids</subject><subject>Glycolipids - chemistry</subject><subject>Glycolipids - metabolism</subject><subject>photosynthetic bacteria</subject><subject>pigments</subject><subject>S-adenosylmethionine</subject><issn>0968-0896</issn><issn>1464-3391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEotPCA7ABL9kkXMfOj8UKjYAiVWIBXVvO9U3qURIHO1Mpr8BT42gKS1befOeT7zlZ9oZDwYHXH05FN2FRAhcFyAIEPMsOXNYyF0Lx59kBVN3m0Kr6KruO8QQApVT8ZXZVirpWXMEh-33ccPRL8IuZKQ9uHljvw2RW52fmZrY-EDO4jWwI_rxE5nuGD6MPPvqJ2DBu6Ee3OBuZiwzDGZ0Zd0MKOcsCRRdXMyPtwSEQzawzuFLYMTOvNM-GxS2uNMVX2YvejJFeP7032f2Xzz-Pt_nd96_fjp_uchRNs-a2lFzUHZZtVQuLpsQKm67pesUBTUO2hQoUQkeqqqTAqqROdlZxaVXVWi5usvcXb7r615niqicXkcYxNeDPUSe7bKCRskoov6CYDo6Ber0EN5mwaQ56n0CfdJpA7xNokDpNkDJvn_TnbiL7L_G38wS8uwC98doMwUV9_yMZKgDOOSiViI8XglINj46CjugotWhdIFy19e4_H_gDDcOi7w</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Mizoguchi, Tadashi</creator><creator>Tsukatani, Yusuke</creator><creator>Harada, Jiro</creator><creator>Takasaki, Shin</creator><creator>Yoshitomi, Taichi</creator><creator>Tamiaki, Hitoshi</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130701</creationdate><title>Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems</title><author>Mizoguchi, Tadashi ; Tsukatani, Yusuke ; Harada, Jiro ; Takasaki, Shin ; Yoshitomi, Taichi ; Tamiaki, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-d24136bc28563dca2c5c7b7bf910ca7ed80509c0be95543c52eb4bd914d958d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acid tolerance</topic><topic>Acylation</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriochlorophyll</topic><topic>Bacteriochlorophylls - chemistry</topic><topic>Bacteriochlorophylls - metabolism</topic><topic>chemistry</topic><topic>Chlorobaculum tepidum</topic><topic>Chlorobi - chemistry</topic><topic>Chlorobi - cytology</topic><topic>Chlorobi - metabolism</topic><topic>Chlorobium tepidum</topic><topic>Chlorosome</topic><topic>Cyclopropane fatty acid</topic><topic>Cyclopropanes - chemistry</topic><topic>Cyclopropanes - metabolism</topic><topic>Fatty Acids - chemistry</topic><topic>Fatty Acids - metabolism</topic><topic>Glycolipid</topic><topic>glycolipids</topic><topic>Glycolipids - chemistry</topic><topic>Glycolipids - metabolism</topic><topic>photosynthetic bacteria</topic><topic>pigments</topic><topic>S-adenosylmethionine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mizoguchi, Tadashi</creatorcontrib><creatorcontrib>Tsukatani, Yusuke</creatorcontrib><creatorcontrib>Harada, Jiro</creatorcontrib><creatorcontrib>Takasaki, Shin</creatorcontrib><creatorcontrib>Yoshitomi, Taichi</creatorcontrib><creatorcontrib>Tamiaki, Hitoshi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioorganic & medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mizoguchi, Tadashi</au><au>Tsukatani, Yusuke</au><au>Harada, Jiro</au><au>Takasaki, Shin</au><au>Yoshitomi, Taichi</au><au>Tamiaki, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems</atitle><jtitle>Bioorganic & medicinal chemistry</jtitle><addtitle>Bioorg Med Chem</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>21</volume><issue>13</issue><spage>3689</spage><epage>3694</epage><pages>3689-3694</pages><issn>0968-0896</issn><eissn>1464-3391</eissn><abstract>Green photosynthetic bacteria have unique light-harvesting antenna systems called chlorosomes. Chlorobaculum tepidum, a model organism of the bacteria, biosynthesized monogalactosyl- and rhamnosylgalactosyldiacylglycerides possessing a methylene-bridged palmitoleyl group characterized by a cis-substituted cyclopropane ring as the dominant glycolipids of its chlorosome surface. The formation of the cyclopropane ring was chemically inhibited by supplementation of sinefungin, an analog of S-adenosyl-l-methionine, into the bacterial cultivation. The presence of the cyclopropane ring reinforced acid resistance of the light-harvesting chlorosomes and suppressed acidic demetalation (pheophytinization) of bacteriochlorophyll-c pigments constructing the core part of chlorosomes. The ring-formation would represent direct and post-synthetic modifications of chlorosome membrane properties and was tolerant of acidic environments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23669190</pmid><doi>10.1016/j.bmc.2013.04.030</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0968-0896 |
ispartof | Bioorganic & medicinal chemistry, 2013-07, Vol.21 (13), p.3689-3694 |
issn | 0968-0896 1464-3391 |
language | eng |
recordid | cdi_proquest_miscellaneous_1364707445 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | acid tolerance Acylation Bacterial Proteins - chemistry Bacterial Proteins - metabolism Bacteriochlorophyll Bacteriochlorophylls - chemistry Bacteriochlorophylls - metabolism chemistry Chlorobaculum tepidum Chlorobi - chemistry Chlorobi - cytology Chlorobi - metabolism Chlorobium tepidum Chlorosome Cyclopropane fatty acid Cyclopropanes - chemistry Cyclopropanes - metabolism Fatty Acids - chemistry Fatty Acids - metabolism Glycolipid glycolipids Glycolipids - chemistry Glycolipids - metabolism photosynthetic bacteria pigments S-adenosylmethionine |
title | Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclopropane-ring%20formation%20in%20the%20acyl%20groups%20of%20chlorosome%20glycolipids%20is%20crucial%20for%20acid%20resistance%20of%20green%20bacterial%20antenna%20systems&rft.jtitle=Bioorganic%20&%20medicinal%20chemistry&rft.au=Mizoguchi,%20Tadashi&rft.date=2013-07-01&rft.volume=21&rft.issue=13&rft.spage=3689&rft.epage=3694&rft.pages=3689-3694&rft.issn=0968-0896&rft.eissn=1464-3391&rft_id=info:doi/10.1016/j.bmc.2013.04.030&rft_dat=%3Cproquest_cross%3E1364707445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-d24136bc28563dca2c5c7b7bf910ca7ed80509c0be95543c52eb4bd914d958d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1364707445&rft_id=info:pmid/23669190&rfr_iscdi=true |