Loading…

Testing of Atmospheric Turbulence Effects on the Performance of Micro Air Vehicles

Micro Air Vehicles (MAV) are generally operated at low altitudes and within the earth boundary layer. This is a very dynamic environment with varying wind intensity and turbulence levels far greater than those experienced by traditional manned aircraft cruising at higher altitudes. Yet aerodynamic r...

Full description

Saved in:
Bibliographic Details
Published in:International journal of micro air vehicles 2012-06, Vol.4 (2), p.133-149
Main Authors: Lundström, David, Krus, Petter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Micro Air Vehicles (MAV) are generally operated at low altitudes and within the earth boundary layer. This is a very dynamic environment with varying wind intensity and turbulence levels far greater than those experienced by traditional manned aircraft cruising at higher altitudes. Yet aerodynamic research on MAVs is often based on the assumption of steady aerodynamics. Little effort has been made to experimentally determine the validity of this assumption. In this paper, the effect of turbulence on the performance of a MAV is studied using flight testing in different wind conditions. Flight testing technique, data logging equipment and data reduction are explained. Additionally, a low cost technique for propeller performance measurement is presented. Results show that the flow around a MAV flying in windy conditions qualifies as highly unsteady, although the impact on its performance is surprisingly small for the kind of turbulence levels at which MAVs can be expected to operate. Accelerometer data from the flights reveals that if steady aerodynamic theory is assumed, increasing turbulence should have resulted in a measurable drag increase, thus indicating that the tested MAV to some extent passively manages to benefit from the turbulence.
ISSN:1756-8293
1756-8307
DOI:10.1260/1756-8293.4.2.133