Loading…

Photoinduced reorientation processes in thin films of photochromic LC polymers on substrates with a photocontrollable command surface

Orientation and reorientation processes that occur in nematic and cholesteric LC polymer systems under irradiation with plane-polarized light are studied. A copolyacrylate containing phenyl benzoate and azobenzene side groups is synthesized as a nematic polymer; the cholesteric mixture is prepared v...

Full description

Saved in:
Bibliographic Details
Published in:Polymer science. Series A, Chemistry, physics Chemistry, physics, 2010-08, Vol.52 (8), p.812-823
Main Authors: Ryabchun, A. V., Bobrovsky, A. Yu, Shibaev, V. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orientation and reorientation processes that occur in nematic and cholesteric LC polymer systems under irradiation with plane-polarized light are studied. A copolyacrylate containing phenyl benzoate and azobenzene side groups is synthesized as a nematic polymer; the cholesteric mixture is prepared via doping of the nematic copolymer with the chiral dopant, the derivative of D -isosorbide. Thin layers of the azobenzene-containing photoorientant SD-1 are first used as orienting substrates for polymer liquid crystals. Thin layers of the copolymer and of the mixture are spin-coated on the substrate after irradiation of the photoorientant layer with polarized light. It is shown that after annealing phenyl benzoate and azobenzene side groups of the nematic copolymer orient strictly along the direction of orientation of surface molecules, whereas in the case of the cholesteric mixture, a partial formation of the helical structure is observed. It is demonstrated that all the systems under examination can experience the repeated cyclic reorientation of the cooperative type under irradiation and subsequent annealing of the films.
ISSN:0965-545X
1757-1820
1555-6107
DOI:10.1134/S0965545X10080079