Loading…
Reduction Behavior of Sinter Based on Top Gas Recycling-Oxygen Blast Furnace
In order to explore the behavior laws of sinter reduction in TGR-OBF ( top gas recycling-oxygen blast furnace ), reduction experiments of sinter have been conducted by thermal balance mass loss method with different atmospheres , temperatures and volume flows.The changes of RI ( reduction degree of...
Saved in:
Published in: | Journal of iron and steel research, international international, 2012-09, Vol.19 (9), p.13-19 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to explore the behavior laws of sinter reduction in TGR-OBF ( top gas recycling-oxygen blast furnace ), reduction experiments of sinter have been conducted by thermal balance mass loss method with different atmospheres , temperatures and volume flows.The changes of RI ( reduction degree of Fe 2 O 3 ), RI′ ( reduction rate of Fe 2 O 3 ) and r ( reduction degree of FeO ) have been examined.The results show that the reduction of sinter was significantly improved under TGR-OBF atmosphere , and the RIand r were measured up to 98.2%and 97.8%at 900℃ respectively.With increasing of the reduction temperature , the reduction of sinter speeded up greatly , and the reduction time-duration shortened from 117min at 900 ℃ to 63min at 1 100 ℃.Moreover , the reduction of sinter enhanced with increasing of the reductive gas flow.When the flow increased from 10to 15L / min , the initial reduction rate of sinter increased from 2.47% / min to 3.73% / min.While increasing H2and CO contents in the reductive atmosphere , the reduction of sinter was promoted.Besides , H 2 influenced more evidently than CO to the reduction of sinter , especially in the later stage of the reduction process , for instance , the reduction of wustite will be improved enormously when increasing the H2content in the reductive atmosphere. |
---|---|
ISSN: | 1006-706X 2210-3988 |
DOI: | 10.1016/S1006-706X(13)60003-5 |