Loading…

Non-linear analysis of pre-tensioned concrete planar beams

► The mathematical model for analysis of pre-tensioned concrete beam is presented. ► Reissner’s planar beam theory is used to model the tendons and the concrete. ► The slip between the tendon and the concrete is accounted for. ► The smeared crack concept in combination with the crack-band model is a...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures 2013-01, Vol.46, p.279-293
Main Authors: Markovič, M., Krauberger, N., Saje, M., Planinc, I., Bratina, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-742e9d023833383b23f020081abc8225d65f6877f6ba706e83c5c9309e747dd13
cites cdi_FETCH-LOGICAL-c378t-742e9d023833383b23f020081abc8225d65f6877f6ba706e83c5c9309e747dd13
container_end_page 293
container_issue
container_start_page 279
container_title Engineering structures
container_volume 46
creator Markovič, M.
Krauberger, N.
Saje, M.
Planinc, I.
Bratina, S.
description ► The mathematical model for analysis of pre-tensioned concrete beam is presented. ► Reissner’s planar beam theory is used to model the tendons and the concrete. ► The slip between the tendon and the concrete is accounted for. ► The smeared crack concept in combination with the crack-band model is adopted. ► The proposed method of analysis could be very convenient for engineering design. We have derived a one-dimensional mathematical model and a numerical procedure for the non-linear static analysis of pre-tensioned concrete planar beams, which intends to describe quantitatively the global behaviour as well as some local phenomena in the beam, such as the tangential slip and the traction between the tendon and concrete, with accuracy sufficient for engineering design. The advantage of such a model is its extreme computational efficiency compared to the two- and three-dimensional formulations. A shear-stiff, kinematically exact planar beam theory is used to model each component of the beam. The bending moment in the tendon is neglected. Cracking of concrete is accounted for using the smeared crack concept. Softening of material, and the related localisation of deformations, is in the numerical solution resolved by the combined use of the arc-length method and the constant strain crack band element, whose dimension is related to the fracture energy of concrete in tension. The tangential slip between the tendon and concrete is fully accounted for, yet the normal separation is not allowed. The model enables us to analyse the variation of slip and the tangential traction on tendons as well as softening of concrete in both tension and compression along the beam axis and in time. The validity of the present one-dimensional model is verified on two pre-stressed simply supported beams previously experimentally and computationally studied in literature (Rabczuk and Eibl, 2004 [2]; Rabczuk et al., 2005 [18]; Rabczuk and Belytschko, 2006 [20]). It is found out that the results of the present one-dimensional model are well in keeping with the experimental and numerical results from literature. Recalling the extreme computational efficiency of the present formulation compared to the 2D and 3D formulations it is concluded that the proposed method of analysis could be very convenient for engineering design.
doi_str_mv 10.1016/j.engstruct.2012.08.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365120219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029612004026</els_id><sourcerecordid>1365120219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-742e9d023833383b23f020081abc8225d65f6877f6ba706e83c5c9309e747dd13</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDOSCxCVhbSe2w62q-JMquMDZcpwNcpU6wU6R-va4atUrh9VevpnZHUJuKRQUqHhYF-i_4xS2dioYUFaAKgDKMzKjSvJccsbPyQxoSXNgtbgkVzGuAYApBTPy-D74vHceTciMN_0uupgNXTYGzCf00Q0e28wO3gacMBv7BIWsQbOJ1-SiM33Em-Oek6_np8_la776eHlbLla55VJNuSwZ1i0wrjhP0zDeAQNQ1DRWMVa1ouqEkrITjZEgUHFb2ZpDjbKUbUv5nNwffMcw_GwxTnrjosU-nYLDNmrKRUUZMFonVB5QG4YYA3Z6DG5jwk5T0Pu29Fqf2tL7tjQondpKyrtjiInW9F0w3rp4kjMhS0VLSNziwGH6-Ndh0NE69BZbFzB5toP7N-sPNtuDMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365120219</pqid></control><display><type>article</type><title>Non-linear analysis of pre-tensioned concrete planar beams</title><source>ScienceDirect Freedom Collection</source><creator>Markovič, M. ; Krauberger, N. ; Saje, M. ; Planinc, I. ; Bratina, S.</creator><creatorcontrib>Markovič, M. ; Krauberger, N. ; Saje, M. ; Planinc, I. ; Bratina, S.</creatorcontrib><description>► The mathematical model for analysis of pre-tensioned concrete beam is presented. ► Reissner’s planar beam theory is used to model the tendons and the concrete. ► The slip between the tendon and the concrete is accounted for. ► The smeared crack concept in combination with the crack-band model is adopted. ► The proposed method of analysis could be very convenient for engineering design. We have derived a one-dimensional mathematical model and a numerical procedure for the non-linear static analysis of pre-tensioned concrete planar beams, which intends to describe quantitatively the global behaviour as well as some local phenomena in the beam, such as the tangential slip and the traction between the tendon and concrete, with accuracy sufficient for engineering design. The advantage of such a model is its extreme computational efficiency compared to the two- and three-dimensional formulations. A shear-stiff, kinematically exact planar beam theory is used to model each component of the beam. The bending moment in the tendon is neglected. Cracking of concrete is accounted for using the smeared crack concept. Softening of material, and the related localisation of deformations, is in the numerical solution resolved by the combined use of the arc-length method and the constant strain crack band element, whose dimension is related to the fracture energy of concrete in tension. The tangential slip between the tendon and concrete is fully accounted for, yet the normal separation is not allowed. The model enables us to analyse the variation of slip and the tangential traction on tendons as well as softening of concrete in both tension and compression along the beam axis and in time. The validity of the present one-dimensional model is verified on two pre-stressed simply supported beams previously experimentally and computationally studied in literature (Rabczuk and Eibl, 2004 [2]; Rabczuk et al., 2005 [18]; Rabczuk and Belytschko, 2006 [20]). It is found out that the results of the present one-dimensional model are well in keeping with the experimental and numerical results from literature. Recalling the extreme computational efficiency of the present formulation compared to the 2D and 3D formulations it is concluded that the proposed method of analysis could be very convenient for engineering design.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2012.08.004</identifier><identifier>CODEN: ENSTDF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Building structure ; Buildings. Public works ; Construction (buildings and works) ; Exact sciences and technology ; Finite element method ; Kinematically exact beam theory ; Pre-stressed concrete beam ; Prestressed concrete structure ; Slip in contact ; Stresses. Safety ; Structural analysis. Stresses ; Tension stiffening</subject><ispartof>Engineering structures, 2013-01, Vol.46, p.279-293</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-742e9d023833383b23f020081abc8225d65f6877f6ba706e83c5c9309e747dd13</citedby><cites>FETCH-LOGICAL-c378t-742e9d023833383b23f020081abc8225d65f6877f6ba706e83c5c9309e747dd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26748140$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Markovič, M.</creatorcontrib><creatorcontrib>Krauberger, N.</creatorcontrib><creatorcontrib>Saje, M.</creatorcontrib><creatorcontrib>Planinc, I.</creatorcontrib><creatorcontrib>Bratina, S.</creatorcontrib><title>Non-linear analysis of pre-tensioned concrete planar beams</title><title>Engineering structures</title><description>► The mathematical model for analysis of pre-tensioned concrete beam is presented. ► Reissner’s planar beam theory is used to model the tendons and the concrete. ► The slip between the tendon and the concrete is accounted for. ► The smeared crack concept in combination with the crack-band model is adopted. ► The proposed method of analysis could be very convenient for engineering design. We have derived a one-dimensional mathematical model and a numerical procedure for the non-linear static analysis of pre-tensioned concrete planar beams, which intends to describe quantitatively the global behaviour as well as some local phenomena in the beam, such as the tangential slip and the traction between the tendon and concrete, with accuracy sufficient for engineering design. The advantage of such a model is its extreme computational efficiency compared to the two- and three-dimensional formulations. A shear-stiff, kinematically exact planar beam theory is used to model each component of the beam. The bending moment in the tendon is neglected. Cracking of concrete is accounted for using the smeared crack concept. Softening of material, and the related localisation of deformations, is in the numerical solution resolved by the combined use of the arc-length method and the constant strain crack band element, whose dimension is related to the fracture energy of concrete in tension. The tangential slip between the tendon and concrete is fully accounted for, yet the normal separation is not allowed. The model enables us to analyse the variation of slip and the tangential traction on tendons as well as softening of concrete in both tension and compression along the beam axis and in time. The validity of the present one-dimensional model is verified on two pre-stressed simply supported beams previously experimentally and computationally studied in literature (Rabczuk and Eibl, 2004 [2]; Rabczuk et al., 2005 [18]; Rabczuk and Belytschko, 2006 [20]). It is found out that the results of the present one-dimensional model are well in keeping with the experimental and numerical results from literature. Recalling the extreme computational efficiency of the present formulation compared to the 2D and 3D formulations it is concluded that the proposed method of analysis could be very convenient for engineering design.</description><subject>Applied sciences</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Construction (buildings and works)</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Kinematically exact beam theory</subject><subject>Pre-stressed concrete beam</subject><subject>Prestressed concrete structure</subject><subject>Slip in contact</subject><subject>Stresses. Safety</subject><subject>Structural analysis. Stresses</subject><subject>Tension stiffening</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDOSCxCVhbSe2w62q-JMquMDZcpwNcpU6wU6R-va4atUrh9VevpnZHUJuKRQUqHhYF-i_4xS2dioYUFaAKgDKMzKjSvJccsbPyQxoSXNgtbgkVzGuAYApBTPy-D74vHceTciMN_0uupgNXTYGzCf00Q0e28wO3gacMBv7BIWsQbOJ1-SiM33Em-Oek6_np8_la776eHlbLla55VJNuSwZ1i0wrjhP0zDeAQNQ1DRWMVa1ouqEkrITjZEgUHFb2ZpDjbKUbUv5nNwffMcw_GwxTnrjosU-nYLDNmrKRUUZMFonVB5QG4YYA3Z6DG5jwk5T0Pu29Fqf2tL7tjQondpKyrtjiInW9F0w3rp4kjMhS0VLSNziwGH6-Ndh0NE69BZbFzB5toP7N-sPNtuDMQ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Markovič, M.</creator><creator>Krauberger, N.</creator><creator>Saje, M.</creator><creator>Planinc, I.</creator><creator>Bratina, S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201301</creationdate><title>Non-linear analysis of pre-tensioned concrete planar beams</title><author>Markovič, M. ; Krauberger, N. ; Saje, M. ; Planinc, I. ; Bratina, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-742e9d023833383b23f020081abc8225d65f6877f6ba706e83c5c9309e747dd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Construction (buildings and works)</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Kinematically exact beam theory</topic><topic>Pre-stressed concrete beam</topic><topic>Prestressed concrete structure</topic><topic>Slip in contact</topic><topic>Stresses. Safety</topic><topic>Structural analysis. Stresses</topic><topic>Tension stiffening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markovič, M.</creatorcontrib><creatorcontrib>Krauberger, N.</creatorcontrib><creatorcontrib>Saje, M.</creatorcontrib><creatorcontrib>Planinc, I.</creatorcontrib><creatorcontrib>Bratina, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markovič, M.</au><au>Krauberger, N.</au><au>Saje, M.</au><au>Planinc, I.</au><au>Bratina, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear analysis of pre-tensioned concrete planar beams</atitle><jtitle>Engineering structures</jtitle><date>2013-01</date><risdate>2013</risdate><volume>46</volume><spage>279</spage><epage>293</epage><pages>279-293</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><coden>ENSTDF</coden><abstract>► The mathematical model for analysis of pre-tensioned concrete beam is presented. ► Reissner’s planar beam theory is used to model the tendons and the concrete. ► The slip between the tendon and the concrete is accounted for. ► The smeared crack concept in combination with the crack-band model is adopted. ► The proposed method of analysis could be very convenient for engineering design. We have derived a one-dimensional mathematical model and a numerical procedure for the non-linear static analysis of pre-tensioned concrete planar beams, which intends to describe quantitatively the global behaviour as well as some local phenomena in the beam, such as the tangential slip and the traction between the tendon and concrete, with accuracy sufficient for engineering design. The advantage of such a model is its extreme computational efficiency compared to the two- and three-dimensional formulations. A shear-stiff, kinematically exact planar beam theory is used to model each component of the beam. The bending moment in the tendon is neglected. Cracking of concrete is accounted for using the smeared crack concept. Softening of material, and the related localisation of deformations, is in the numerical solution resolved by the combined use of the arc-length method and the constant strain crack band element, whose dimension is related to the fracture energy of concrete in tension. The tangential slip between the tendon and concrete is fully accounted for, yet the normal separation is not allowed. The model enables us to analyse the variation of slip and the tangential traction on tendons as well as softening of concrete in both tension and compression along the beam axis and in time. The validity of the present one-dimensional model is verified on two pre-stressed simply supported beams previously experimentally and computationally studied in literature (Rabczuk and Eibl, 2004 [2]; Rabczuk et al., 2005 [18]; Rabczuk and Belytschko, 2006 [20]). It is found out that the results of the present one-dimensional model are well in keeping with the experimental and numerical results from literature. Recalling the extreme computational efficiency of the present formulation compared to the 2D and 3D formulations it is concluded that the proposed method of analysis could be very convenient for engineering design.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2012.08.004</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2013-01, Vol.46, p.279-293
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_miscellaneous_1365120219
source ScienceDirect Freedom Collection
subjects Applied sciences
Building structure
Buildings. Public works
Construction (buildings and works)
Exact sciences and technology
Finite element method
Kinematically exact beam theory
Pre-stressed concrete beam
Prestressed concrete structure
Slip in contact
Stresses. Safety
Structural analysis. Stresses
Tension stiffening
title Non-linear analysis of pre-tensioned concrete planar beams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20analysis%20of%20pre-tensioned%20concrete%20planar%20beams&rft.jtitle=Engineering%20structures&rft.au=Markovi%C4%8D,%20M.&rft.date=2013-01&rft.volume=46&rft.spage=279&rft.epage=293&rft.pages=279-293&rft.issn=0141-0296&rft.eissn=1873-7323&rft.coden=ENSTDF&rft_id=info:doi/10.1016/j.engstruct.2012.08.004&rft_dat=%3Cproquest_cross%3E1365120219%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-742e9d023833383b23f020081abc8225d65f6877f6ba706e83c5c9309e747dd13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365120219&rft_id=info:pmid/&rfr_iscdi=true