Loading…

Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder

► Water soluble CMC and PVDF binders are used to prepare anatase TiO2 electrodes. ► The electrochemical behavior of the different electrodes is studied between 20 and −30°C. ► CMC/TiO2 anodes show lower ICL, lower polarization and higher low-temperature capacity at high rates than PVDF/TiO2 anodes....

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2012-12, Vol.85, p.566-571
Main Authors: Mancini, M., Nobili, F., Tossici, R., Marassi, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-b7f1d99d9404d8ed67f824ea25185d2580dcbcd9337b93de9f266d648c435a573
cites cdi_FETCH-LOGICAL-c378t-b7f1d99d9404d8ed67f824ea25185d2580dcbcd9337b93de9f266d648c435a573
container_end_page 571
container_issue
container_start_page 566
container_title Electrochimica acta
container_volume 85
creator Mancini, M.
Nobili, F.
Tossici, R.
Marassi, R.
description ► Water soluble CMC and PVDF binders are used to prepare anatase TiO2 electrodes. ► The electrochemical behavior of the different electrodes is studied between 20 and −30°C. ► CMC/TiO2 anodes show lower ICL, lower polarization and higher low-temperature capacity at high rates than PVDF/TiO2 anodes. ► Electrochemical Impedance Spectroscopy results show better kinetics for CMC/TiO2 electrodes. The electrochemical behavior at low temperatures of anatase TiO2 electrodes for Lithium ion batteries have been evaluated by galvanostatic cycles in the temperature range 20 to −30°C. Two different manufacturing processes have been used to prepare anatase anodes containing water soluble sodium carboxymethyl cellulose (CMC) or poly(vinilydene fluoride) (PVDF) as binder. The low temperature performances at different charge/discharge rates of TiO2/CMC and TiO2/PVDF electrodes are compared and discussed in terms of irreversible capacity loss (ICL) at the first cycle, capacity retention and reversible capacity. The kinetics of the electrodes containing CMC or PVDF is evaluated by Electrochemical Impedance Spectroscopy.
doi_str_mv 10.1016/j.electacta.2012.08.115
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365120538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861201420X</els_id><sourcerecordid>1365120538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-b7f1d99d9404d8ed67f824ea25185d2580dcbcd9337b93de9f266d648c435a573</originalsourceid><addsrcrecordid>eNqFUc2O1SAUJkYTr6PPIBsTN61QWqDLyURHk5vMwnFNKJxabmipQGe8L-bzSb2T2ZqQnJxzvh_gQ-g9JTUllH861eDBZF1O3RDa1ETWlHYv0IFKwSomu_4lOhBCWdVyyV-jNymdCCGCC3JAf77nzZ5xGHGeAP9TisFMMDujPR5g0g8uRKwz9uERZ5hXiDpvEdLO-RkBFqyXYEs_FtzR5cltM3ZhwYPOGaIrmzXCqiNY_FjWBa6zToDv3V1TmjLVBYdT8NvgoVS7Kxgdh_D7PEOezh4b8H7zobAGt1iIb9GrUfsE757qFfrx5fP9zdfqeHf77eb6WBkmZK4GMVLb97ZvSWslWC5G2bSgm47KzjadJNYMxvaMiaFnFvqx4dzyVpqWdboT7Ap9vOiuMfzaIGU1u7RfRi8QtqQo4x1tSMdkgYoL1MSQUoRRrdHNOp4VJWpPSp3Uc1JqT0oRqUpShfnhyUSn8utj1Itx6ZnecMF4T3eH6wsOyosfHESVjIPFgHWx6Cob3H-9_gLW4bK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365120538</pqid></control><display><type>article</type><title>Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder</title><source>Elsevier</source><creator>Mancini, M. ; Nobili, F. ; Tossici, R. ; Marassi, R.</creator><creatorcontrib>Mancini, M. ; Nobili, F. ; Tossici, R. ; Marassi, R.</creatorcontrib><description>► Water soluble CMC and PVDF binders are used to prepare anatase TiO2 electrodes. ► The electrochemical behavior of the different electrodes is studied between 20 and −30°C. ► CMC/TiO2 anodes show lower ICL, lower polarization and higher low-temperature capacity at high rates than PVDF/TiO2 anodes. ► Electrochemical Impedance Spectroscopy results show better kinetics for CMC/TiO2 electrodes. The electrochemical behavior at low temperatures of anatase TiO2 electrodes for Lithium ion batteries have been evaluated by galvanostatic cycles in the temperature range 20 to −30°C. Two different manufacturing processes have been used to prepare anatase anodes containing water soluble sodium carboxymethyl cellulose (CMC) or poly(vinilydene fluoride) (PVDF) as binder. The low temperature performances at different charge/discharge rates of TiO2/CMC and TiO2/PVDF electrodes are compared and discussed in terms of irreversible capacity loss (ICL) at the first cycle, capacity retention and reversible capacity. The kinetics of the electrodes containing CMC or PVDF is evaluated by Electrochemical Impedance Spectroscopy.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2012.08.115</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anatase ; Anatase TiO2 ; Anodes ; Applied sciences ; Binder ; Binders ; Carboxymethyl cellulose (CMC) ; Chemistry ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Electrodes ; Exact sciences and technology ; General and physical chemistry ; Lithium-ion batteries ; Lithium-ion battery ; Low temperature ; Polyvinylidene fluorides ; Sodium carboxymethyl cellulose ; Titanium dioxide</subject><ispartof>Electrochimica acta, 2012-12, Vol.85, p.566-571</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-b7f1d99d9404d8ed67f824ea25185d2580dcbcd9337b93de9f266d648c435a573</citedby><cites>FETCH-LOGICAL-c378t-b7f1d99d9404d8ed67f824ea25185d2580dcbcd9337b93de9f266d648c435a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26736918$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mancini, M.</creatorcontrib><creatorcontrib>Nobili, F.</creatorcontrib><creatorcontrib>Tossici, R.</creatorcontrib><creatorcontrib>Marassi, R.</creatorcontrib><title>Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder</title><title>Electrochimica acta</title><description>► Water soluble CMC and PVDF binders are used to prepare anatase TiO2 electrodes. ► The electrochemical behavior of the different electrodes is studied between 20 and −30°C. ► CMC/TiO2 anodes show lower ICL, lower polarization and higher low-temperature capacity at high rates than PVDF/TiO2 anodes. ► Electrochemical Impedance Spectroscopy results show better kinetics for CMC/TiO2 electrodes. The electrochemical behavior at low temperatures of anatase TiO2 electrodes for Lithium ion batteries have been evaluated by galvanostatic cycles in the temperature range 20 to −30°C. Two different manufacturing processes have been used to prepare anatase anodes containing water soluble sodium carboxymethyl cellulose (CMC) or poly(vinilydene fluoride) (PVDF) as binder. The low temperature performances at different charge/discharge rates of TiO2/CMC and TiO2/PVDF electrodes are compared and discussed in terms of irreversible capacity loss (ICL) at the first cycle, capacity retention and reversible capacity. The kinetics of the electrodes containing CMC or PVDF is evaluated by Electrochemical Impedance Spectroscopy.</description><subject>Anatase</subject><subject>Anatase TiO2</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Binder</subject><subject>Binders</subject><subject>Carboxymethyl cellulose (CMC)</subject><subject>Chemistry</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Low temperature</subject><subject>Polyvinylidene fluorides</subject><subject>Sodium carboxymethyl cellulose</subject><subject>Titanium dioxide</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFUc2O1SAUJkYTr6PPIBsTN61QWqDLyURHk5vMwnFNKJxabmipQGe8L-bzSb2T2ZqQnJxzvh_gQ-g9JTUllH861eDBZF1O3RDa1ETWlHYv0IFKwSomu_4lOhBCWdVyyV-jNymdCCGCC3JAf77nzZ5xGHGeAP9TisFMMDujPR5g0g8uRKwz9uERZ5hXiDpvEdLO-RkBFqyXYEs_FtzR5cltM3ZhwYPOGaIrmzXCqiNY_FjWBa6zToDv3V1TmjLVBYdT8NvgoVS7Kxgdh_D7PEOezh4b8H7zobAGt1iIb9GrUfsE757qFfrx5fP9zdfqeHf77eb6WBkmZK4GMVLb97ZvSWslWC5G2bSgm47KzjadJNYMxvaMiaFnFvqx4dzyVpqWdboT7Ap9vOiuMfzaIGU1u7RfRi8QtqQo4x1tSMdkgYoL1MSQUoRRrdHNOp4VJWpPSp3Uc1JqT0oRqUpShfnhyUSn8utj1Itx6ZnecMF4T3eH6wsOyosfHESVjIPFgHWx6Cob3H-9_gLW4bK8</recordid><startdate>20121215</startdate><enddate>20121215</enddate><creator>Mancini, M.</creator><creator>Nobili, F.</creator><creator>Tossici, R.</creator><creator>Marassi, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121215</creationdate><title>Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder</title><author>Mancini, M. ; Nobili, F. ; Tossici, R. ; Marassi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-b7f1d99d9404d8ed67f824ea25185d2580dcbcd9337b93de9f266d648c435a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anatase</topic><topic>Anatase TiO2</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Binder</topic><topic>Binders</topic><topic>Carboxymethyl cellulose (CMC)</topic><topic>Chemistry</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Low temperature</topic><topic>Polyvinylidene fluorides</topic><topic>Sodium carboxymethyl cellulose</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mancini, M.</creatorcontrib><creatorcontrib>Nobili, F.</creatorcontrib><creatorcontrib>Tossici, R.</creatorcontrib><creatorcontrib>Marassi, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mancini, M.</au><au>Nobili, F.</au><au>Tossici, R.</au><au>Marassi, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder</atitle><jtitle>Electrochimica acta</jtitle><date>2012-12-15</date><risdate>2012</risdate><volume>85</volume><spage>566</spage><epage>571</epage><pages>566-571</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>► Water soluble CMC and PVDF binders are used to prepare anatase TiO2 electrodes. ► The electrochemical behavior of the different electrodes is studied between 20 and −30°C. ► CMC/TiO2 anodes show lower ICL, lower polarization and higher low-temperature capacity at high rates than PVDF/TiO2 anodes. ► Electrochemical Impedance Spectroscopy results show better kinetics for CMC/TiO2 electrodes. The electrochemical behavior at low temperatures of anatase TiO2 electrodes for Lithium ion batteries have been evaluated by galvanostatic cycles in the temperature range 20 to −30°C. Two different manufacturing processes have been used to prepare anatase anodes containing water soluble sodium carboxymethyl cellulose (CMC) or poly(vinilydene fluoride) (PVDF) as binder. The low temperature performances at different charge/discharge rates of TiO2/CMC and TiO2/PVDF electrodes are compared and discussed in terms of irreversible capacity loss (ICL) at the first cycle, capacity retention and reversible capacity. The kinetics of the electrodes containing CMC or PVDF is evaluated by Electrochemical Impedance Spectroscopy.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2012.08.115</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2012-12, Vol.85, p.566-571
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1365120538
source Elsevier
subjects Anatase
Anatase TiO2
Anodes
Applied sciences
Binder
Binders
Carboxymethyl cellulose (CMC)
Chemistry
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemistry
Electrodes
Exact sciences and technology
General and physical chemistry
Lithium-ion batteries
Lithium-ion battery
Low temperature
Polyvinylidene fluorides
Sodium carboxymethyl cellulose
Titanium dioxide
title Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20electrochemical%20behavior%20at%20low%20temperatures%20of%20green%20anodes%20for%20Lithium%20ion%20batteries%20prepared%20with%20anatase%20TiO2%20and%20water%20soluble%20sodium%20carboxymethyl%20cellulose%20binder&rft.jtitle=Electrochimica%20acta&rft.au=Mancini,%20M.&rft.date=2012-12-15&rft.volume=85&rft.spage=566&rft.epage=571&rft.pages=566-571&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2012.08.115&rft_dat=%3Cproquest_cross%3E1365120538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-b7f1d99d9404d8ed67f824ea25185d2580dcbcd9337b93de9f266d648c435a573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365120538&rft_id=info:pmid/&rfr_iscdi=true