Loading…
Analysis of pesticides residues in environmental water samples using multiwalled carbon nanotubes dispersive solid-phase extraction
In this manuscript, a dispersive SPE method based on the use of multiwalled carbon nanotubes has been developed for the determination of 15 organophosphorus pesticides residues including some of their metabolites (disulfoton sulfoxide, ethoprophos, cadusafos, dimethoate, terbufos, disulfoton, chlorp...
Saved in:
Published in: | Journal of separation science 2013-02, Vol.36 (3), p.556-563 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this manuscript, a dispersive SPE method based on the use of multiwalled carbon nanotubes has been developed for the determination of 15 organophosphorus pesticides residues including some of their metabolites (disulfoton sulfoxide, ethoprophos, cadusafos, dimethoate, terbufos, disulfoton, chlorpyrifos‐methyl, malaoxon, fenitrothion, pirimiphos‐methyl, malathion, chlorpyrifos, terbufos sulfone, disulfoton sulfone, and fensulfothion) from real environmental waters (run‐off, mineral and tap water) by GC with nitrogen phosphorus detection. Factors that affect the enrichment efficiency such as sample volume, multiwalled carbon nanotubes amount, and volume of eluent were studied. The optimized method was validated in terms of matrix‐matched calibration, recovery, precision, and accuracy for the three analyzed samples. In this last case, the developed Student´s t test demonstrated that there were no significant differences between real and spiked concentrations. Optimum dispersive SPE conditions (extraction of 200 mL of water, pH 6.0, with 130 mg of multiwalled carbon nanotubes, elution with 25 mL of dichloromethane for run‐off and tap water and 30 mL for mineral water) allowed the quantitative extraction of analytes at levels lower than the maximum residues limits legislated by the European Union, with LODs between 1.16 and 93.6 ng/L. Absolute recovery values achieved were in the range of 67–107% (RSD values |
---|---|
ISSN: | 1615-9306 1615-9314 |
DOI: | 10.1002/jssc.201200782 |