Loading…

Manipulating dynamics with chemical structure: probing vibrationally-enhanced tunnelling in photoexcited catechol

Ultrafast time-resolved velocity map ion imaging (TR-VMI) and time-resolved ion-yield (TR-IY) methods are utilised to reveal a comprehensive picture of the electronic state relaxation dynamics in photoexcited catechol (1,2-dihydroxybenzene). After excitation to the S1 ((1)ππ*) state between 280.5 (t...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2013-05, Vol.15 (18), p.6879-6892
Main Authors: CHATTERLEY, Adam S, YOUNG, Jamie D, TOWNSEND, Dave, ZUREK, Justyna M, PATERSON, Martin J, ROBERTS, Gareth M, STAVROS, Vasilios G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrafast time-resolved velocity map ion imaging (TR-VMI) and time-resolved ion-yield (TR-IY) methods are utilised to reveal a comprehensive picture of the electronic state relaxation dynamics in photoexcited catechol (1,2-dihydroxybenzene). After excitation to the S1 ((1)ππ*) state between 280.5 (the S1 origin band, S1(v = 0)) to 243 nm, the population in this state is observed to decay through coupling onto the S2 ((1)πσ*) state, which is dissociative with respect to the non-hydrogen bonded 'free' O-H bond (labelled O(1)-H). This process occurs via tunnelling under an S1/S2 conical intersection (CI) on a timeframe of 5-11 ps, resulting in O(1)-H bond fission along S2. Concomitant formation of ground state catechoxyl radicals (C6H5O2(X)), in coincidence with translationally excited H-atoms, occurs over the same timescale as the S1 state population decays. Between 254-237 nm, direct excitation to the S2 state is also observed, manifesting in the ultrafast (~100 fs) formation of H-atoms with high kinetic energy release. From these measurements we determine that the S1/S2 CI lies ~3700-5500 cm(-1) above the S1(v = 0) level, indicating that the barrier height to tunnelling from S1(v = 0) → S2 is comparable to that observed in the related 'benchmark' species phenol (hydroxybenzene). We discuss how a highly 'vibrationally-enhanced' tunnelling mechanism is responsible for the two orders of magnitude enhancement to the tunnelling rate in catechol, relative to that previously determined in phenol (>1.2 ns), despite similar barrier heights. This phenomenon is a direct consequence of the non-planar S1 excited state minimum structure (C1 symmetry) in catechol, which in turn yields relaxed symmetry constraints for vibronic coupling from S1(v = 0) → S2- a scenario which does not exist for phenol. These findings offer an elegant example of how even simple chemical modifications (ortho-hydroxy substitution) to a fundamental, biologically relevant, UV chromophore, such as phenol, can have profound effects on the ensuing excited state dynamics.
ISSN:1463-9076
1463-9084
DOI:10.1039/c3cp51108a