Loading…
Analytical Study of the IEEE 802.11p MAC Sublayer in Vehicular Networks
This paper proposes an analytical model for the throughput of the enhanced distributed channel access (EDCA) mechanism in the IEEE 802.11p medium-access control (MAC) sublayer. Features in EDCA such as different contention windows (CW) and arbitration interframe space (AIFS) for each access category...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2012-06, Vol.13 (2), p.873-886 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes an analytical model for the throughput of the enhanced distributed channel access (EDCA) mechanism in the IEEE 802.11p medium-access control (MAC) sublayer. Features in EDCA such as different contention windows (CW) and arbitration interframe space (AIFS) for each access category (AC) and internal collisions are taken into account. The analytical model is suitable for both basic access and the request-to-send/clear-to-send (RTS/CTS) access mode. Different from most of existing 3-D or 4-D Markov-chain-based analytical models for IEEE 802.11e EDCA, without computation complexity, the proposed analytical model is explicitly solvable and applies to four access categories of traffic in the IEEE 802.11p. The proposed model can be used for large-scale network analysis and validation of network simulators under saturated traffic conditions. Simulation results are given to demonstrate the accuracy of the analytical model. In addition, we investigate service differentiation capabilities of the IEEE 802.11p MAC sublayer. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2012.2183366 |