Loading…
Stable controllers for robust stabilization of systems with infinitely many unstable poles
This paper studies the problem of robust stabilization by a stable controller for a linear time-invariant single-input single-output infinite dimensional system. We consider a class of plants having finitely many simple unstable zeros but possibly infinitely many unstable poles. First we show that t...
Saved in:
Published in: | Systems & control letters 2013-06, Vol.62 (6), p.511-516 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper studies the problem of robust stabilization by a stable controller for a linear time-invariant single-input single-output infinite dimensional system. We consider a class of plants having finitely many simple unstable zeros but possibly infinitely many unstable poles. First we show that the problem can be reduced to an interpolation–minimization by a unit element. Next, by the modified Nevanlinna–Pick interpolation, we obtain both lower and upper bounds on the multiplicative perturbation under which the plant can be stabilized by a stable controller. In addition, we find stable controllers to provide robust stability. We also present a numerical example to illustrate the results and apply the proposed method to a repetitive control system. |
---|---|
ISSN: | 0167-6911 1872-7956 |
DOI: | 10.1016/j.sysconle.2013.02.005 |