Loading…
A testbed for wide-field, high-resolution, gigapixel-class cameras
The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of mic...
Saved in:
Published in: | Review of scientific instruments 2013-05, Vol.84 (5), p.053107-053107 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.4804199 |