Loading…
Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation
Melatonin has been known to be a chemopreventive agent since its levels inversely correlate with the risk of developing cancer. We have recently shown that melatonin induces p38-dependent phosphorylation of both p53 and histone H2AX. This is associated with a p53-mediated increase in repair of both...
Saved in:
Published in: | Carcinogenesis (New York) 2013-05, Vol.34 (5), p.1051-1061 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Melatonin has been known to be a chemopreventive agent since its levels inversely correlate with the risk of developing cancer. We have recently shown that melatonin induces p38-dependent phosphorylation of both p53 and histone H2AX. This is associated with a p53-mediated increase in repair of both endogenous and chemotherapy-induced DNA damage. In addition, the inhibition of p38 activities impairs melatonin's capability to induce a p53-dependent DNA damage response and thus its ability to maintain genome integrity. Since melatonin-induced p53 phosphorylation requires an intact p38 phosphorylation cascade and p38 can be activated by G proteins, we supposed that melatonin's activities could be mediated by its G-protein-coupled membrane receptors, MT1 and MT2. Here, we show that the activation of the p53-dependent DNA damage response by melatonin is indeed mediated by MT1 and MT2. As a result, the absence of either receptor impairs melatonin's ability to reduce both cell proliferation and clonogenic potential of cancer cells. In addition, this causes an impairment of the p53-dependent DNA damage response. By providing molecular insight, our findings might have translational impact, suggesting the involvement of melatonin receptors in tumorigenesis. |
---|---|
ISSN: | 0143-3334 1460-2180 |
DOI: | 10.1093/carcin/bgt025 |