Loading…

Gene Expression in Brain and Liver Produced by Three Different Regimens of Alcohol Consumption in Mice: Comparison with Immune Activation. e59870

Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce so...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-03, Vol.8 (3)
Main Authors: Osterndorff-Kahanek, Elizabeth, Ponomarev, Igor, Blednov, Yuri A, Harris, R Adron
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title PloS one
container_volume 8
creator Osterndorff-Kahanek, Elizabeth
Ponomarev, Igor
Blednov, Yuri A
Harris, R Adron
description Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.
doi_str_mv 10.1371/journal.pone.0059870
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1367489014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1367489014</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_13674890143</originalsourceid><addsrcrecordid>eNqVTktOAzEUi5CQKJQbsHhLNh2SpsyHXSktVAIJoe6rkHnDpMpnyJsUOAY3ZkC9ABtbsi3bjF0InglZiKtdSNErm3XBY8b5dVUW_IiNRCWnk3zK5Qk7JdoNhizzfMS-79EjLD-7iEQmeDAebqMaUPkaHs0eIzzHUCeNNbx-waaNiHBnmgYj-h5e8M049AShgbnVoQ0WFsFTcl1_qHsyGm8G0XUqGhq0D9O3sHYuDctz3Zu9-o1mgH9nx-y4UZbw_MBn7HK13CweJl0M7wmp3zpDGq1VHkOirZB5MSsrLmbyH9EfP_VgxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367489014</pqid></control><display><type>article</type><title>Gene Expression in Brain and Liver Produced by Three Different Regimens of Alcohol Consumption in Mice: Comparison with Immune Activation. e59870</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Osterndorff-Kahanek, Elizabeth ; Ponomarev, Igor ; Blednov, Yuri A ; Harris, R Adron</creator><creatorcontrib>Osterndorff-Kahanek, Elizabeth ; Ponomarev, Igor ; Blednov, Yuri A ; Harris, R Adron</creatorcontrib><description>Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.</description><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0059870</identifier><language>eng</language><subject>Alcoholic beverages</subject><ispartof>PloS one, 2013-03, Vol.8 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37013</link.rule.ids></links><search><creatorcontrib>Osterndorff-Kahanek, Elizabeth</creatorcontrib><creatorcontrib>Ponomarev, Igor</creatorcontrib><creatorcontrib>Blednov, Yuri A</creatorcontrib><creatorcontrib>Harris, R Adron</creatorcontrib><title>Gene Expression in Brain and Liver Produced by Three Different Regimens of Alcohol Consumption in Mice: Comparison with Immune Activation. e59870</title><title>PloS one</title><description>Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.</description><subject>Alcoholic beverages</subject><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVTktOAzEUi5CQKJQbsHhLNh2SpsyHXSktVAIJoe6rkHnDpMpnyJsUOAY3ZkC9ABtbsi3bjF0InglZiKtdSNErm3XBY8b5dVUW_IiNRCWnk3zK5Qk7JdoNhizzfMS-79EjLD-7iEQmeDAebqMaUPkaHs0eIzzHUCeNNbx-waaNiHBnmgYj-h5e8M049AShgbnVoQ0WFsFTcl1_qHsyGm8G0XUqGhq0D9O3sHYuDctz3Zu9-o1mgH9nx-y4UZbw_MBn7HK13CweJl0M7wmp3zpDGq1VHkOirZB5MSsrLmbyH9EfP_VgxA</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Osterndorff-Kahanek, Elizabeth</creator><creator>Ponomarev, Igor</creator><creator>Blednov, Yuri A</creator><creator>Harris, R Adron</creator><scope>7T5</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130301</creationdate><title>Gene Expression in Brain and Liver Produced by Three Different Regimens of Alcohol Consumption in Mice: Comparison with Immune Activation. e59870</title><author>Osterndorff-Kahanek, Elizabeth ; Ponomarev, Igor ; Blednov, Yuri A ; Harris, R Adron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_13674890143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alcoholic beverages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osterndorff-Kahanek, Elizabeth</creatorcontrib><creatorcontrib>Ponomarev, Igor</creatorcontrib><creatorcontrib>Blednov, Yuri A</creatorcontrib><creatorcontrib>Harris, R Adron</creatorcontrib><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osterndorff-Kahanek, Elizabeth</au><au>Ponomarev, Igor</au><au>Blednov, Yuri A</au><au>Harris, R Adron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Expression in Brain and Liver Produced by Three Different Regimens of Alcohol Consumption in Mice: Comparison with Immune Activation. e59870</atitle><jtitle>PloS one</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>8</volume><issue>3</issue><eissn>1932-6203</eissn><abstract>Chronically available alcohol escalates drinking in mice and a single injection of the immune activator lipopolysaccharide can mimic this effect and result in a persistent increase in alcohol consumption. We hypothesized that chronic alcohol drinking and lipopolysaccharide injections will produce some similar molecular changes that play a role in regulation of alcohol intake. We investigated the molecular mechanisms of chronic alcohol consumption or lipopolysaccharide insult by gene expression profiling in prefrontal cortex and liver of C57BL/6J mice. We identified similar patterns of transcriptional changes among four groups of animals, three consuming alcohol (vs water) in different consumption tests and one injected with lipopolysaccharide (vs. vehicle). The three tests of alcohol consumption are the continuous chronic two bottle choice (Chronic), two bottle choice available every other day (Chronic Intermittent) and limited access to one bottle of ethanol (Drinking in the Dark). Gene expression changes were more numerous and marked in liver than in prefrontal cortex for the alcohol treatments and similar in the two tissues for lipopolysaccharide. Many of the changes were unique to each treatment, but there was significant overlap in prefrontal cortex for Chronic-Chronic Intermittent and for Chronic Intermittent-lipopolysaccharide and in liver all pairs showed overlap. In silico cell-type analysis indicated that lipopolysaccharide had strongest effects on brain microglia and liver Kupffer cells. Pathway analysis detected a prefrontal cortex-based dopamine-related (PPP1R1B, DRD1, DRD2, FOSB, PDNY) network that was highly over-represented in the Chronic Intermittent group, with several genes from the network being also regulated in the Chronic and lipopolysaccharide (but not Drinking in the Dark) groups. Liver showed a CYP and GST centered metabolic network shared in part by all four treatments. We demonstrate common consequences of chronic alcohol consumption and immune activation in both liver and brain and show distinct genomic consequences of different types of alcohol consumption.</abstract><doi>10.1371/journal.pone.0059870</doi></addata></record>
fulltext fulltext
identifier EISSN: 1932-6203
ispartof PloS one, 2013-03, Vol.8 (3)
issn 1932-6203
language eng
recordid cdi_proquest_miscellaneous_1367489014
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alcoholic beverages
title Gene Expression in Brain and Liver Produced by Three Different Regimens of Alcohol Consumption in Mice: Comparison with Immune Activation. e59870
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Expression%20in%20Brain%20and%20Liver%20Produced%20by%20Three%20Different%20Regimens%20of%20Alcohol%20Consumption%20in%20Mice:%20Comparison%20with%20Immune%20Activation.%20e59870&rft.jtitle=PloS%20one&rft.au=Osterndorff-Kahanek,%20Elizabeth&rft.date=2013-03-01&rft.volume=8&rft.issue=3&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0059870&rft_dat=%3Cproquest%3E1367489014%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_13674890143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1367489014&rft_id=info:pmid/&rfr_iscdi=true