Loading…

Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films

The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3  substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measuremen...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2013-07, Vol.12 (7), p.634-640
Main Authors: Tan, Shiyong, Zhang, Yan, Xia, Miao, Ye, Zirong, Chen, Fei, Xie, Xin, Peng, Rui, Xu, Difei, Fan, Qin, Xu, Haichao, Jiang, Juan, Zhang, Tong, Lai, Xinchun, Xiang, Tao, Hu, Jiangping, Xie, Binping, Feng, Donglai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133
cites cdi_FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133
container_end_page 640
container_issue 7
container_start_page 634
container_title Nature materials
container_volume 12
creator Tan, Shiyong
Zhang, Yan
Xia, Miao
Ye, Zirong
Chen, Fei
Xie, Xin
Peng, Rui
Xu, Difei
Fan, Qin
Xu, Haichao
Jiang, Juan
Zhang, Tong
Lai, Xinchun
Xiang, Tao
Hu, Jiangping
Xie, Binping
Feng, Donglai
description The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3  substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T c , we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using in situ angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.
doi_str_mv 10.1038/nmat3654
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1370635421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3002966101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133</originalsourceid><addsrcrecordid>eNpdkMlOwzAURS0EYihIfAGKxAYWoR4SOyxRxVCpEouWdeQ4z-AqcYLtgPgbvoUvw6VlEKt33_XRtX0ROib4gmBWjG0rA-N5toX2SSZ4mnGOtzeaEEr30IH3S4wpyXO-i_YoE7hgVOwjPbUBnJYKUmPrQUGd-KEHp7rVFsyLCW-JtNENThqb1tCDrcGGxPfGJlH5FfEqX8An0biBOYznbmHu2cd7eIqONk3rD9GOlo2Ho80coYeb68XkLp3d304nV7NUsQKHlFZY6kuNK1FlgtSKC6YJXCpRiUyLSlJesJoUBQiiKsmhyhRVmEORMSIVYWyEzta5veueB_ChbI1X0DTSQjf4ksSPc5ZnlET09B-67AZn4-u-KIFpXuDfQOU67x3osnemle6tJLhcdV9-dx_Rk03gULVQ_4DfZUfgfA34eGQfwf258X_YJzE1jtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370702580</pqid></control><display><type>article</type><title>Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films</title><source>Nature</source><creator>Tan, Shiyong ; Zhang, Yan ; Xia, Miao ; Ye, Zirong ; Chen, Fei ; Xie, Xin ; Peng, Rui ; Xu, Difei ; Fan, Qin ; Xu, Haichao ; Jiang, Juan ; Zhang, Tong ; Lai, Xinchun ; Xiang, Tao ; Hu, Jiangping ; Xie, Binping ; Feng, Donglai</creator><creatorcontrib>Tan, Shiyong ; Zhang, Yan ; Xia, Miao ; Ye, Zirong ; Chen, Fei ; Xie, Xin ; Peng, Rui ; Xu, Difei ; Fan, Qin ; Xu, Haichao ; Jiang, Juan ; Zhang, Tong ; Lai, Xinchun ; Xiang, Tao ; Hu, Jiangping ; Xie, Binping ; Feng, Donglai</creatorcontrib><description>The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3  substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T c , we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using in situ angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3654</identifier><identifier>PMID: 23708327</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/301/119/544 ; Biomaterials ; Condensed Matter Physics ; Density ; High temperature ; Interfaces ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Strain rate ; Substrates ; Superconductivity ; Thin films ; Transition temperatures</subject><ispartof>Nature materials, 2013-07, Vol.12 (7), p.634-640</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133</citedby><cites>FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23708327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Shiyong</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Xia, Miao</creatorcontrib><creatorcontrib>Ye, Zirong</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Peng, Rui</creatorcontrib><creatorcontrib>Xu, Difei</creatorcontrib><creatorcontrib>Fan, Qin</creatorcontrib><creatorcontrib>Xu, Haichao</creatorcontrib><creatorcontrib>Jiang, Juan</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Lai, Xinchun</creatorcontrib><creatorcontrib>Xiang, Tao</creatorcontrib><creatorcontrib>Hu, Jiangping</creatorcontrib><creatorcontrib>Xie, Binping</creatorcontrib><creatorcontrib>Feng, Donglai</creatorcontrib><title>Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3  substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T c , we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using in situ angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.</description><subject>639/301/119/1003</subject><subject>639/301/119/544</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>High temperature</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Strain rate</subject><subject>Substrates</subject><subject>Superconductivity</subject><subject>Thin films</subject><subject>Transition temperatures</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkMlOwzAURS0EYihIfAGKxAYWoR4SOyxRxVCpEouWdeQ4z-AqcYLtgPgbvoUvw6VlEKt33_XRtX0ROib4gmBWjG0rA-N5toX2SSZ4mnGOtzeaEEr30IH3S4wpyXO-i_YoE7hgVOwjPbUBnJYKUmPrQUGd-KEHp7rVFsyLCW-JtNENThqb1tCDrcGGxPfGJlH5FfEqX8An0biBOYznbmHu2cd7eIqONk3rD9GOlo2Ho80coYeb68XkLp3d304nV7NUsQKHlFZY6kuNK1FlgtSKC6YJXCpRiUyLSlJesJoUBQiiKsmhyhRVmEORMSIVYWyEzta5veueB_ChbI1X0DTSQjf4ksSPc5ZnlET09B-67AZn4-u-KIFpXuDfQOU67x3osnemle6tJLhcdV9-dx_Rk03gULVQ_4DfZUfgfA34eGQfwf258X_YJzE1jtQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Tan, Shiyong</creator><creator>Zhang, Yan</creator><creator>Xia, Miao</creator><creator>Ye, Zirong</creator><creator>Chen, Fei</creator><creator>Xie, Xin</creator><creator>Peng, Rui</creator><creator>Xu, Difei</creator><creator>Fan, Qin</creator><creator>Xu, Haichao</creator><creator>Jiang, Juan</creator><creator>Zhang, Tong</creator><creator>Lai, Xinchun</creator><creator>Xiang, Tao</creator><creator>Hu, Jiangping</creator><creator>Xie, Binping</creator><creator>Feng, Donglai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130701</creationdate><title>Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films</title><author>Tan, Shiyong ; Zhang, Yan ; Xia, Miao ; Ye, Zirong ; Chen, Fei ; Xie, Xin ; Peng, Rui ; Xu, Difei ; Fan, Qin ; Xu, Haichao ; Jiang, Juan ; Zhang, Tong ; Lai, Xinchun ; Xiang, Tao ; Hu, Jiangping ; Xie, Binping ; Feng, Donglai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119/1003</topic><topic>639/301/119/544</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>High temperature</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Strain rate</topic><topic>Substrates</topic><topic>Superconductivity</topic><topic>Thin films</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Shiyong</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Xia, Miao</creatorcontrib><creatorcontrib>Ye, Zirong</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Peng, Rui</creatorcontrib><creatorcontrib>Xu, Difei</creatorcontrib><creatorcontrib>Fan, Qin</creatorcontrib><creatorcontrib>Xu, Haichao</creatorcontrib><creatorcontrib>Jiang, Juan</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Lai, Xinchun</creatorcontrib><creatorcontrib>Xiang, Tao</creatorcontrib><creatorcontrib>Hu, Jiangping</creatorcontrib><creatorcontrib>Xie, Binping</creatorcontrib><creatorcontrib>Feng, Donglai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Shiyong</au><au>Zhang, Yan</au><au>Xia, Miao</au><au>Ye, Zirong</au><au>Chen, Fei</au><au>Xie, Xin</au><au>Peng, Rui</au><au>Xu, Difei</au><au>Fan, Qin</au><au>Xu, Haichao</au><au>Jiang, Juan</au><au>Zhang, Tong</au><au>Lai, Xinchun</au><au>Xiang, Tao</au><au>Hu, Jiangping</au><au>Xie, Binping</au><au>Feng, Donglai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>12</volume><issue>7</issue><spage>634</spage><epage>640</epage><pages>634-640</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3  substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its T c , we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS. Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using in situ angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23708327</pmid><doi>10.1038/nmat3654</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2013-07, Vol.12 (7), p.634-640
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1370635421
source Nature
subjects 639/301/119/1003
639/301/119/544
Biomaterials
Condensed Matter Physics
Density
High temperature
Interfaces
Materials Science
Nanotechnology
Optical and Electronic Materials
Physics
Strain rate
Substrates
Superconductivity
Thin films
Transition temperatures
title Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface-induced%20superconductivity%20and%20strain-dependent%20spin%20density%20waves%20in%20FeSe/SrTiO3%C2%A0thin%20films&rft.jtitle=Nature%20materials&rft.au=Tan,%20Shiyong&rft.date=2013-07-01&rft.volume=12&rft.issue=7&rft.spage=634&rft.epage=640&rft.pages=634-640&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3654&rft_dat=%3Cproquest_cross%3E3002966101%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1370702580&rft_id=info:pmid/23708327&rfr_iscdi=true