Loading…
Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films
The record superconducting transition temperature ( T c ) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO 3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measuremen...
Saved in:
Published in: | Nature materials 2013-07, Vol.12 (7), p.634-640 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133 |
container_end_page | 640 |
container_issue | 7 |
container_start_page | 634 |
container_title | Nature materials |
container_volume | 12 |
creator | Tan, Shiyong Zhang, Yan Xia, Miao Ye, Zirong Chen, Fei Xie, Xin Peng, Rui Xu, Difei Fan, Qin Xu, Haichao Jiang, Juan Zhang, Tong Lai, Xinchun Xiang, Tao Hu, Jiangping Xie, Binping Feng, Donglai |
description | The record superconducting transition temperature (
T
c
) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO
3
substrates, indications of a new record of 65 K have been reported. Using
in situ
photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its
T
c
, we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.
Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using
in situ
angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material. |
doi_str_mv | 10.1038/nmat3654 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1370635421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3002966101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133</originalsourceid><addsrcrecordid>eNpdkMlOwzAURS0EYihIfAGKxAYWoR4SOyxRxVCpEouWdeQ4z-AqcYLtgPgbvoUvw6VlEKt33_XRtX0ROib4gmBWjG0rA-N5toX2SSZ4mnGOtzeaEEr30IH3S4wpyXO-i_YoE7hgVOwjPbUBnJYKUmPrQUGd-KEHp7rVFsyLCW-JtNENThqb1tCDrcGGxPfGJlH5FfEqX8An0biBOYznbmHu2cd7eIqONk3rD9GOlo2Ho80coYeb68XkLp3d304nV7NUsQKHlFZY6kuNK1FlgtSKC6YJXCpRiUyLSlJesJoUBQiiKsmhyhRVmEORMSIVYWyEzta5veueB_ChbI1X0DTSQjf4ksSPc5ZnlET09B-67AZn4-u-KIFpXuDfQOU67x3osnemle6tJLhcdV9-dx_Rk03gULVQ_4DfZUfgfA34eGQfwf258X_YJzE1jtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370702580</pqid></control><display><type>article</type><title>Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films</title><source>Nature</source><creator>Tan, Shiyong ; Zhang, Yan ; Xia, Miao ; Ye, Zirong ; Chen, Fei ; Xie, Xin ; Peng, Rui ; Xu, Difei ; Fan, Qin ; Xu, Haichao ; Jiang, Juan ; Zhang, Tong ; Lai, Xinchun ; Xiang, Tao ; Hu, Jiangping ; Xie, Binping ; Feng, Donglai</creator><creatorcontrib>Tan, Shiyong ; Zhang, Yan ; Xia, Miao ; Ye, Zirong ; Chen, Fei ; Xie, Xin ; Peng, Rui ; Xu, Difei ; Fan, Qin ; Xu, Haichao ; Jiang, Juan ; Zhang, Tong ; Lai, Xinchun ; Xiang, Tao ; Hu, Jiangping ; Xie, Binping ; Feng, Donglai</creatorcontrib><description>The record superconducting transition temperature (
T
c
) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO
3
substrates, indications of a new record of 65 K have been reported. Using
in situ
photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its
T
c
, we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.
Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using
in situ
angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3654</identifier><identifier>PMID: 23708327</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/301/119/544 ; Biomaterials ; Condensed Matter Physics ; Density ; High temperature ; Interfaces ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Strain rate ; Substrates ; Superconductivity ; Thin films ; Transition temperatures</subject><ispartof>Nature materials, 2013-07, Vol.12 (7), p.634-640</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133</citedby><cites>FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23708327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Shiyong</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Xia, Miao</creatorcontrib><creatorcontrib>Ye, Zirong</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Peng, Rui</creatorcontrib><creatorcontrib>Xu, Difei</creatorcontrib><creatorcontrib>Fan, Qin</creatorcontrib><creatorcontrib>Xu, Haichao</creatorcontrib><creatorcontrib>Jiang, Juan</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Lai, Xinchun</creatorcontrib><creatorcontrib>Xiang, Tao</creatorcontrib><creatorcontrib>Hu, Jiangping</creatorcontrib><creatorcontrib>Xie, Binping</creatorcontrib><creatorcontrib>Feng, Donglai</creatorcontrib><title>Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The record superconducting transition temperature (
T
c
) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO
3
substrates, indications of a new record of 65 K have been reported. Using
in situ
photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its
T
c
, we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.
Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using
in situ
angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.</description><subject>639/301/119/1003</subject><subject>639/301/119/544</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>High temperature</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Strain rate</subject><subject>Substrates</subject><subject>Superconductivity</subject><subject>Thin films</subject><subject>Transition temperatures</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkMlOwzAURS0EYihIfAGKxAYWoR4SOyxRxVCpEouWdeQ4z-AqcYLtgPgbvoUvw6VlEKt33_XRtX0ROib4gmBWjG0rA-N5toX2SSZ4mnGOtzeaEEr30IH3S4wpyXO-i_YoE7hgVOwjPbUBnJYKUmPrQUGd-KEHp7rVFsyLCW-JtNENThqb1tCDrcGGxPfGJlH5FfEqX8An0biBOYznbmHu2cd7eIqONk3rD9GOlo2Ho80coYeb68XkLp3d304nV7NUsQKHlFZY6kuNK1FlgtSKC6YJXCpRiUyLSlJesJoUBQiiKsmhyhRVmEORMSIVYWyEzta5veueB_ChbI1X0DTSQjf4ksSPc5ZnlET09B-67AZn4-u-KIFpXuDfQOU67x3osnemle6tJLhcdV9-dx_Rk03gULVQ_4DfZUfgfA34eGQfwf258X_YJzE1jtQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Tan, Shiyong</creator><creator>Zhang, Yan</creator><creator>Xia, Miao</creator><creator>Ye, Zirong</creator><creator>Chen, Fei</creator><creator>Xie, Xin</creator><creator>Peng, Rui</creator><creator>Xu, Difei</creator><creator>Fan, Qin</creator><creator>Xu, Haichao</creator><creator>Jiang, Juan</creator><creator>Zhang, Tong</creator><creator>Lai, Xinchun</creator><creator>Xiang, Tao</creator><creator>Hu, Jiangping</creator><creator>Xie, Binping</creator><creator>Feng, Donglai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130701</creationdate><title>Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films</title><author>Tan, Shiyong ; Zhang, Yan ; Xia, Miao ; Ye, Zirong ; Chen, Fei ; Xie, Xin ; Peng, Rui ; Xu, Difei ; Fan, Qin ; Xu, Haichao ; Jiang, Juan ; Zhang, Tong ; Lai, Xinchun ; Xiang, Tao ; Hu, Jiangping ; Xie, Binping ; Feng, Donglai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119/1003</topic><topic>639/301/119/544</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>High temperature</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Strain rate</topic><topic>Substrates</topic><topic>Superconductivity</topic><topic>Thin films</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Shiyong</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Xia, Miao</creatorcontrib><creatorcontrib>Ye, Zirong</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Peng, Rui</creatorcontrib><creatorcontrib>Xu, Difei</creatorcontrib><creatorcontrib>Fan, Qin</creatorcontrib><creatorcontrib>Xu, Haichao</creatorcontrib><creatorcontrib>Jiang, Juan</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Lai, Xinchun</creatorcontrib><creatorcontrib>Xiang, Tao</creatorcontrib><creatorcontrib>Hu, Jiangping</creatorcontrib><creatorcontrib>Xie, Binping</creatorcontrib><creatorcontrib>Feng, Donglai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Shiyong</au><au>Zhang, Yan</au><au>Xia, Miao</au><au>Ye, Zirong</au><au>Chen, Fei</au><au>Xie, Xin</au><au>Peng, Rui</au><au>Xu, Difei</au><au>Fan, Qin</au><au>Xu, Haichao</au><au>Jiang, Juan</au><au>Zhang, Tong</au><au>Lai, Xinchun</au><au>Xiang, Tao</au><au>Hu, Jiangping</au><au>Xie, Binping</au><au>Feng, Donglai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>12</volume><issue>7</issue><spage>634</spage><epage>640</epage><pages>634-640</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The record superconducting transition temperature (
T
c
) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO
3
substrates, indications of a new record of 65 K have been reported. Using
in situ
photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films—a key ingredient of Fe-HTS that was missed in FeSe before—and we find that this weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe. Beyond providing a comprehensive understanding of FeSe films and directions to further enhance its
T
c
, we map out the phase diagram of FeSe as a function of lattice constant, which contains all the essential physics of Fe-HTS. With the simplest structure, cleanest composition and single tuning parameter, monolayer FeSe is an ideal system for testing theories of Fe-HTS.
Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using
in situ
angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23708327</pmid><doi>10.1038/nmat3654</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2013-07, Vol.12 (7), p.634-640 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1370635421 |
source | Nature |
subjects | 639/301/119/1003 639/301/119/544 Biomaterials Condensed Matter Physics Density High temperature Interfaces Materials Science Nanotechnology Optical and Electronic Materials Physics Strain rate Substrates Superconductivity Thin films Transition temperatures |
title | Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface-induced%20superconductivity%20and%20strain-dependent%20spin%20density%20waves%20in%20FeSe/SrTiO3%C2%A0thin%20films&rft.jtitle=Nature%20materials&rft.au=Tan,%20Shiyong&rft.date=2013-07-01&rft.volume=12&rft.issue=7&rft.spage=634&rft.epage=640&rft.pages=634-640&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3654&rft_dat=%3Cproquest_cross%3E3002966101%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-2b0af9f0b7b471dc673f1e9c7b74f7ba2683d188e71cba6eb4c2c06e8431ac133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1370702580&rft_id=info:pmid/23708327&rfr_iscdi=true |