Loading…

Process Removes Metals from Acid Mine Drainage

Pilot plant experiments demonstrated that 3 stage chemical treatment was required for the effective removal of metals from acid mine drainage. The pH was first adjusted with sodium carbonate, then iron and manganese were precipitated following oxidation with chlorine and potassium permanganate respe...

Full description

Saved in:
Bibliographic Details
Published in:Water environment & technology 1992-07, Vol.4 (7), p.26-28
Main Authors: Boling, Scott D., Kobylinski, Edmund A., Michael, James I.
Format: Magazinearticle
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 28
container_issue 7
container_start_page 26
container_title Water environment & technology
container_volume 4
creator Boling, Scott D.
Kobylinski, Edmund A.
Michael, James I.
description Pilot plant experiments demonstrated that 3 stage chemical treatment was required for the effective removal of metals from acid mine drainage. The pH was first adjusted with sodium carbonate, then iron and manganese were precipitated following oxidation with chlorine and potassium permanganate respectively; aluminium was also removed at this stage. A one-step lime-soda ash softening at pH 10.5 removed further metals as hydroxides and carbonates. Finally, sulphide precipitation attained the necessary low metal levels. Temperatures close to freezing adversely affected the process, principally by slowing the reactions. Good solids capture was necessary at all stages and this would require the use of polymers for the sulphide precipitation.
format magazinearticle
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_13712528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24661711</jstor_id><sourcerecordid>24661711</sourcerecordid><originalsourceid>FETCH-LOGICAL-j538-e0300885b844dfa890b966af260753a151dc827550108b6605cb9feb0cb283503</originalsourceid><addsrcrecordid>eNotjU1LxDAYhIMouFZ_gpCTt8qbzybHZf2EXRTZg7eSpG-lpW3WpCv47y2sl5mBeZg5IytmhSkX-TxfMkhZWmnFJbnKuQdgnINYkfv3FAPmTD9wjD-Y6Q5nN2TapjjSdegauusmpA_JdZP7wmty0S413vx7QfZPj_vNS7l9e37drLdlr5ZPBAFgjPJGyqZ1xoK3WruWa6iUcEyxJhheKQUMjNcaVPC2RQ_BcyMUiILcnWYPKX4fMc_12OWAw-AmjMdcM1Exrha2ILcnsM9zTPUhdaNLvzWXWrOKMfEHlTNIlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>13712528</pqid></control><display><type>magazinearticle</type><title>Process Removes Metals from Acid Mine Drainage</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Boling, Scott D. ; Kobylinski, Edmund A. ; Michael, James I.</creator><creatorcontrib>Boling, Scott D. ; Kobylinski, Edmund A. ; Michael, James I.</creatorcontrib><description>Pilot plant experiments demonstrated that 3 stage chemical treatment was required for the effective removal of metals from acid mine drainage. The pH was first adjusted with sodium carbonate, then iron and manganese were precipitated following oxidation with chlorine and potassium permanganate respectively; aluminium was also removed at this stage. A one-step lime-soda ash softening at pH 10.5 removed further metals as hydroxides and carbonates. Finally, sulphide precipitation attained the necessary low metal levels. Temperatures close to freezing adversely affected the process, principally by slowing the reactions. Good solids capture was necessary at all stages and this would require the use of polymers for the sulphide precipitation.</description><identifier>ISSN: 1044-9493</identifier><identifier>EISSN: 1938-193X</identifier><language>eng</language><publisher>WATER ENVIRONMENT FEDERATION</publisher><subject>Acute toxicity ; Aluminum ; Cadmium ; Chemical precipitation ; Copper ; Iron ; Lead ; Manganese ; News ; Sulfides ; Zinc</subject><ispartof>Water environment &amp; technology, 1992-07, Vol.4 (7), p.26-28</ispartof><rights>1992 WATER ENVIRONMENT FEDERATION</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24661711$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24661711$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Boling, Scott D.</creatorcontrib><creatorcontrib>Kobylinski, Edmund A.</creatorcontrib><creatorcontrib>Michael, James I.</creatorcontrib><title>Process Removes Metals from Acid Mine Drainage</title><title>Water environment &amp; technology</title><description>Pilot plant experiments demonstrated that 3 stage chemical treatment was required for the effective removal of metals from acid mine drainage. The pH was first adjusted with sodium carbonate, then iron and manganese were precipitated following oxidation with chlorine and potassium permanganate respectively; aluminium was also removed at this stage. A one-step lime-soda ash softening at pH 10.5 removed further metals as hydroxides and carbonates. Finally, sulphide precipitation attained the necessary low metal levels. Temperatures close to freezing adversely affected the process, principally by slowing the reactions. Good solids capture was necessary at all stages and this would require the use of polymers for the sulphide precipitation.</description><subject>Acute toxicity</subject><subject>Aluminum</subject><subject>Cadmium</subject><subject>Chemical precipitation</subject><subject>Copper</subject><subject>Iron</subject><subject>Lead</subject><subject>Manganese</subject><subject>News</subject><subject>Sulfides</subject><subject>Zinc</subject><issn>1044-9493</issn><issn>1938-193X</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>1992</creationdate><recordtype>magazinearticle</recordtype><recordid>eNotjU1LxDAYhIMouFZ_gpCTt8qbzybHZf2EXRTZg7eSpG-lpW3WpCv47y2sl5mBeZg5IytmhSkX-TxfMkhZWmnFJbnKuQdgnINYkfv3FAPmTD9wjD-Y6Q5nN2TapjjSdegauusmpA_JdZP7wmty0S413vx7QfZPj_vNS7l9e37drLdlr5ZPBAFgjPJGyqZ1xoK3WruWa6iUcEyxJhheKQUMjNcaVPC2RQ_BcyMUiILcnWYPKX4fMc_12OWAw-AmjMdcM1Exrha2ILcnsM9zTPUhdaNLvzWXWrOKMfEHlTNIlw</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>Boling, Scott D.</creator><creator>Kobylinski, Edmund A.</creator><creator>Michael, James I.</creator><general>WATER ENVIRONMENT FEDERATION</general><scope>7QH</scope></search><sort><creationdate>19920701</creationdate><title>Process Removes Metals from Acid Mine Drainage</title><author>Boling, Scott D. ; Kobylinski, Edmund A. ; Michael, James I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j538-e0300885b844dfa890b966af260753a151dc827550108b6605cb9feb0cb283503</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Acute toxicity</topic><topic>Aluminum</topic><topic>Cadmium</topic><topic>Chemical precipitation</topic><topic>Copper</topic><topic>Iron</topic><topic>Lead</topic><topic>Manganese</topic><topic>News</topic><topic>Sulfides</topic><topic>Zinc</topic><toplevel>online_resources</toplevel><creatorcontrib>Boling, Scott D.</creatorcontrib><creatorcontrib>Kobylinski, Edmund A.</creatorcontrib><creatorcontrib>Michael, James I.</creatorcontrib><collection>Aqualine</collection><jtitle>Water environment &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boling, Scott D.</au><au>Kobylinski, Edmund A.</au><au>Michael, James I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Removes Metals from Acid Mine Drainage</atitle><jtitle>Water environment &amp; technology</jtitle><date>1992-07-01</date><risdate>1992</risdate><volume>4</volume><issue>7</issue><spage>26</spage><epage>28</epage><pages>26-28</pages><issn>1044-9493</issn><eissn>1938-193X</eissn><abstract>Pilot plant experiments demonstrated that 3 stage chemical treatment was required for the effective removal of metals from acid mine drainage. The pH was first adjusted with sodium carbonate, then iron and manganese were precipitated following oxidation with chlorine and potassium permanganate respectively; aluminium was also removed at this stage. A one-step lime-soda ash softening at pH 10.5 removed further metals as hydroxides and carbonates. Finally, sulphide precipitation attained the necessary low metal levels. Temperatures close to freezing adversely affected the process, principally by slowing the reactions. Good solids capture was necessary at all stages and this would require the use of polymers for the sulphide precipitation.</abstract><pub>WATER ENVIRONMENT FEDERATION</pub><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-9493
ispartof Water environment & technology, 1992-07, Vol.4 (7), p.26-28
issn 1044-9493
1938-193X
language eng
recordid cdi_proquest_miscellaneous_13712528
source JSTOR Archival Journals and Primary Sources Collection
subjects Acute toxicity
Aluminum
Cadmium
Chemical precipitation
Copper
Iron
Lead
Manganese
News
Sulfides
Zinc
title Process Removes Metals from Acid Mine Drainage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Removes%20Metals%20from%20Acid%20Mine%20Drainage&rft.jtitle=Water%20environment%20&%20technology&rft.au=Boling,%20Scott%20D.&rft.date=1992-07-01&rft.volume=4&rft.issue=7&rft.spage=26&rft.epage=28&rft.pages=26-28&rft.issn=1044-9493&rft.eissn=1938-193X&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E24661711%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j538-e0300885b844dfa890b966af260753a151dc827550108b6605cb9feb0cb283503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13712528&rft_id=info:pmid/&rft_jstor_id=24661711&rfr_iscdi=true