Loading…

Urine output and resultant osmotic water shift are major determinants of plasma sodium level in syndrome of inappropriate antidiuretic hormone secretion

Although various formulas predicting plasma sodium level ([Na]) are proposed for correction of hyponatremia, it seems that an anticipated [Na] frequently exceeds or falls below the measured [Na], especially in syndrome of inappropriate antidiuretic hormone secretion (SIADH). The causative factors of...

Full description

Saved in:
Bibliographic Details
Published in:Translational research : the journal of laboratory and clinical medicine 2013-07, Vol.162 (1), p.56-63
Main Authors: Okumura, Ataru, Ishikawa, Kota, Watanabe, Risako, Tsunekawa, Taku, Asai, Chikako, Kiyota, Atsushi, Watanabe, Minemori, Oiso, Yutaka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although various formulas predicting plasma sodium level ([Na]) are proposed for correction of hyponatremia, it seems that an anticipated [Na] frequently exceeds or falls below the measured [Na], especially in syndrome of inappropriate antidiuretic hormone secretion (SIADH). The causative factors of the fluctuation have never been investigated clearly. The aim of this study was to identify the determining factors for accurate prediction of [Na] by comparing data from previously proposed formulas and a novel osmotic compartment model (O-C model). The O-C model, which simulates the amounts of osmoles in extracellular and intracellular fluids, can estimate resultant osmotic water shift (OWS) and [Na]. The accuracy of representative formulas was verified in a point-to-point study using blood and urine samples obtained every 4 hours from 9 patients. Among 161 measurement points, a large fluctuation of urine volume and urine sodium level was observed. The gap between anticipated and measured [Na] in the widely used Adrogue-Madias formula was -0.5 ± 0.1 mEq/L/4 h (mean ± standard error), showing a marked tendency to underestimate [Na]. The gap in the O-C model including OWS was 0.1 ± 0.1 mEq/L/4 h, and that in the O-C model eliminating OWS was 1.9 ± 0.2 mEq/L/4 h, indicating that measurement of urine output and estimation of resulting OWS are essential for a superior prediction of [Na] in SIADH. A simulation study with the O-C model including OWS unveiled a distinctive correction pattern of [Na] dependent on the urine volume and urine sodium level, providing a useful choice for the proper type and rate of infusion.
ISSN:1931-5244
1878-1810
DOI:10.1016/j.trsl.2013.03.007