Loading…
Highly Selective Quantum Sieving of D2 from H2 by a Metal–Organic Framework As Determined by Gas Manometry and Infrared Spectroscopy
The quantum sieving effect between D2 and H2 is examined for a series of metal–organic frameworks (MOFs) over the temperature range 77–150 K. Isothermal adsorption measurements demonstrate a consistently larger isosteric heat of adsorption for D2 vs H2, with the largest difference being 1.4 kJ/mol i...
Saved in:
Published in: | Journal of the American Chemical Society 2013-06, Vol.135 (25), p.9458-9464 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quantum sieving effect between D2 and H2 is examined for a series of metal–organic frameworks (MOFs) over the temperature range 77–150 K. Isothermal adsorption measurements demonstrate a consistently larger isosteric heat of adsorption for D2 vs H2, with the largest difference being 1.4 kJ/mol in the case of Ni-MOF-74. This leads to a low-pressure selectivity for this material that increases from 1.5 at 150 K to 5.0 at 77 K. Idealized adsorption solution theory indicates that the selectivity decreases with increasing pressure, but remains well above unity at ambient pressure. Infrared measurements on different MOF materials show a strong correlation between selectivity and the frequency of the adsorbed H2 translational band. This confirms that the separation is predominantly due to the difference in the zero-point energies of the adsorbed isotopologues. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja402103u |