Loading…
A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples
Genetic association studies in practice often involve multiple traits resulting from a common disease mechanism, and samples for such studies are often stratified based on some trait outcomes. In such situations, statistical methods using only one of these traits may be inadequate and lead to under-...
Saved in:
Published in: | Biometrics 2013-06, Vol.69 (2), p.417-426 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4172-25faf4bdf1210defdb2068b864510bada436ec7a13ec4e6eb4f7f563d33e46b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c4172-25faf4bdf1210defdb2068b864510bada436ec7a13ec4e6eb4f7f563d33e46b53 |
container_end_page | 426 |
container_issue | 2 |
container_start_page | 417 |
container_title | Biometrics |
container_volume | 69 |
creator | Wu, Colin O. Zheng, Gang Kwak, Minjung |
description | Genetic association studies in practice often involve multiple traits resulting from a common disease mechanism, and samples for such studies are often stratified based on some trait outcomes. In such situations, statistical methods using only one of these traits may be inadequate and lead to under-powered tests for detecting genetic associations. We propose in this article an estimation and testing procedure for evaluating the shared-association of a genetic marker on the joint distribution of multiple traits of a common disease. Specifically, we assume that the disease mechanism involves both quantitative and qualitative traits, and our samples could be stratified based on the qualitative trait. Through a joint likelihood function, we derive a class of estimators and test statistics for evaluating the shared genetic association on both the quantitative and qualitative traits. Our simulation study shows that the joint likelihood test procedure is potentially more powerful than association tests based on separate traits. Application of our proposed procedure is demonstrated through the rheumatoid arthritis data provided by the Genetic Analysis Workshop 16 (GAW16). |
doi_str_mv | 10.1111/biom.12012 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372081238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44695258</jstor_id><sourcerecordid>44695258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4172-25faf4bdf1210defdb2068b864510bada436ec7a13ec4e6eb4f7f563d33e46b53</originalsourceid><addsrcrecordid>eNp9kM9v0zAYhi0EYmXjwh0UaReElOHfSY9lGmVoo4OCQHCwnOQzuCRxsR2N_vc4y9bDDvhi2e_zPdL3IvSM4BOSzuvKuu6EUEzoAzQjgpMcc4ofohnGWOaMk28H6EkIm_ScC0wfowPKeDknWMzQj0X23tk-Zp_gp4cQrOuzRa_bXbAhM85nS-gh2jpbhOBqq-MIrOPQWAjZtY2_stUQa9dB-vQpNRaabK27bQvhCD0yug3w9PY-RF_enn0-fZdfrJbnp4uLvOakoDkVRhteNYZQghswTUWxLKtSckFwpRvNmYS60IRBzUFCxU1hhGQNY8BlJdghejl5t979GSBE1dlQQ9vqHtwQFGEFxSWhrEzo8T104waf9r2hEpSaG4WvJqr2LgQPRm297bTfKYLVWLkaK1c3lSf4xa1yqDpo9uhdxwkgE3BtW9j9R6XenK8u76TPp5lNiM7vZziXc0HFuEc-5TZE-LvPtf-tZMEKob5-WKo1vvp--ZEJdcX-Acz5pFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370810425</pqid></control><display><type>article</type><title>A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Wu, Colin O. ; Zheng, Gang ; Kwak, Minjung</creator><creatorcontrib>Wu, Colin O. ; Zheng, Gang ; Kwak, Minjung</creatorcontrib><description>Genetic association studies in practice often involve multiple traits resulting from a common disease mechanism, and samples for such studies are often stratified based on some trait outcomes. In such situations, statistical methods using only one of these traits may be inadequate and lead to under-powered tests for detecting genetic associations. We propose in this article an estimation and testing procedure for evaluating the shared-association of a genetic marker on the joint distribution of multiple traits of a common disease. Specifically, we assume that the disease mechanism involves both quantitative and qualitative traits, and our samples could be stratified based on the qualitative trait. Through a joint likelihood function, we derive a class of estimators and test statistics for evaluating the shared genetic association on both the quantitative and qualitative traits. Our simulation study shows that the joint likelihood test procedure is potentially more powerful than association tests based on separate traits. Application of our proposed procedure is demonstrated through the rheumatoid arthritis data provided by the Genetic Analysis Workshop 16 (GAW16).</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12012</identifier><identifier>PMID: 23489105</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Arthritis, Rheumatoid - genetics ; Arthritis, Rheumatoid - immunology ; Autoantibodies - blood ; Autoantibodies - genetics ; BIOMETRIC METHODOLOGY ; Biometry - methods ; Biostatistics ; Genetic Association Studies - statistics & numerical data ; Genetic association study ; Genetic research ; Humans ; Joint regression model ; Likelihood Functions ; Models, Genetic ; Models, Statistical ; Peptides, Cyclic - immunology ; Pleiotropic analysis ; Polymorphism, Single Nucleotide ; Qualitative trait ; Quantitative trait ; Quantitative Trait Loci ; Regression Analysis ; Stratified sample</subject><ispartof>Biometrics, 2013-06, Vol.69 (2), p.417-426</ispartof><rights>2013 International Biometric Society</rights><rights>2013, The International Biometric Society</rights><rights>2013, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4172-25faf4bdf1210defdb2068b864510bada436ec7a13ec4e6eb4f7f563d33e46b53</citedby><cites>FETCH-LOGICAL-c4172-25faf4bdf1210defdb2068b864510bada436ec7a13ec4e6eb4f7f563d33e46b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44695258$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44695258$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23489105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Colin O.</creatorcontrib><creatorcontrib>Zheng, Gang</creatorcontrib><creatorcontrib>Kwak, Minjung</creatorcontrib><title>A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples</title><title>Biometrics</title><addtitle>Biom</addtitle><description>Genetic association studies in practice often involve multiple traits resulting from a common disease mechanism, and samples for such studies are often stratified based on some trait outcomes. In such situations, statistical methods using only one of these traits may be inadequate and lead to under-powered tests for detecting genetic associations. We propose in this article an estimation and testing procedure for evaluating the shared-association of a genetic marker on the joint distribution of multiple traits of a common disease. Specifically, we assume that the disease mechanism involves both quantitative and qualitative traits, and our samples could be stratified based on the qualitative trait. Through a joint likelihood function, we derive a class of estimators and test statistics for evaluating the shared genetic association on both the quantitative and qualitative traits. Our simulation study shows that the joint likelihood test procedure is potentially more powerful than association tests based on separate traits. Application of our proposed procedure is demonstrated through the rheumatoid arthritis data provided by the Genetic Analysis Workshop 16 (GAW16).</description><subject>Arthritis, Rheumatoid - genetics</subject><subject>Arthritis, Rheumatoid - immunology</subject><subject>Autoantibodies - blood</subject><subject>Autoantibodies - genetics</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometry - methods</subject><subject>Biostatistics</subject><subject>Genetic Association Studies - statistics & numerical data</subject><subject>Genetic association study</subject><subject>Genetic research</subject><subject>Humans</subject><subject>Joint regression model</subject><subject>Likelihood Functions</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Peptides, Cyclic - immunology</subject><subject>Pleiotropic analysis</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Qualitative trait</subject><subject>Quantitative trait</subject><subject>Quantitative Trait Loci</subject><subject>Regression Analysis</subject><subject>Stratified sample</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM9v0zAYhi0EYmXjwh0UaReElOHfSY9lGmVoo4OCQHCwnOQzuCRxsR2N_vc4y9bDDvhi2e_zPdL3IvSM4BOSzuvKuu6EUEzoAzQjgpMcc4ofohnGWOaMk28H6EkIm_ScC0wfowPKeDknWMzQj0X23tk-Zp_gp4cQrOuzRa_bXbAhM85nS-gh2jpbhOBqq-MIrOPQWAjZtY2_stUQa9dB-vQpNRaabK27bQvhCD0yug3w9PY-RF_enn0-fZdfrJbnp4uLvOakoDkVRhteNYZQghswTUWxLKtSckFwpRvNmYS60IRBzUFCxU1hhGQNY8BlJdghejl5t979GSBE1dlQQ9vqHtwQFGEFxSWhrEzo8T104waf9r2hEpSaG4WvJqr2LgQPRm297bTfKYLVWLkaK1c3lSf4xa1yqDpo9uhdxwkgE3BtW9j9R6XenK8u76TPp5lNiM7vZziXc0HFuEc-5TZE-LvPtf-tZMEKob5-WKo1vvp--ZEJdcX-Acz5pFw</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Wu, Colin O.</creator><creator>Zheng, Gang</creator><creator>Kwak, Minjung</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>201306</creationdate><title>A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples</title><author>Wu, Colin O. ; Zheng, Gang ; Kwak, Minjung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4172-25faf4bdf1210defdb2068b864510bada436ec7a13ec4e6eb4f7f563d33e46b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arthritis, Rheumatoid - genetics</topic><topic>Arthritis, Rheumatoid - immunology</topic><topic>Autoantibodies - blood</topic><topic>Autoantibodies - genetics</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometry - methods</topic><topic>Biostatistics</topic><topic>Genetic Association Studies - statistics & numerical data</topic><topic>Genetic association study</topic><topic>Genetic research</topic><topic>Humans</topic><topic>Joint regression model</topic><topic>Likelihood Functions</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Peptides, Cyclic - immunology</topic><topic>Pleiotropic analysis</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Qualitative trait</topic><topic>Quantitative trait</topic><topic>Quantitative Trait Loci</topic><topic>Regression Analysis</topic><topic>Stratified sample</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Colin O.</creatorcontrib><creatorcontrib>Zheng, Gang</creatorcontrib><creatorcontrib>Kwak, Minjung</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Colin O.</au><au>Zheng, Gang</au><au>Kwak, Minjung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples</atitle><jtitle>Biometrics</jtitle><addtitle>Biom</addtitle><date>2013-06</date><risdate>2013</risdate><volume>69</volume><issue>2</issue><spage>417</spage><epage>426</epage><pages>417-426</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Genetic association studies in practice often involve multiple traits resulting from a common disease mechanism, and samples for such studies are often stratified based on some trait outcomes. In such situations, statistical methods using only one of these traits may be inadequate and lead to under-powered tests for detecting genetic associations. We propose in this article an estimation and testing procedure for evaluating the shared-association of a genetic marker on the joint distribution of multiple traits of a common disease. Specifically, we assume that the disease mechanism involves both quantitative and qualitative traits, and our samples could be stratified based on the qualitative trait. Through a joint likelihood function, we derive a class of estimators and test statistics for evaluating the shared genetic association on both the quantitative and qualitative traits. Our simulation study shows that the joint likelihood test procedure is potentially more powerful than association tests based on separate traits. Application of our proposed procedure is demonstrated through the rheumatoid arthritis data provided by the Genetic Analysis Workshop 16 (GAW16).</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23489105</pmid><doi>10.1111/biom.12012</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2013-06, Vol.69 (2), p.417-426 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372081238 |
source | EBSCOhost SPORTDiscus with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Arthritis, Rheumatoid - genetics Arthritis, Rheumatoid - immunology Autoantibodies - blood Autoantibodies - genetics BIOMETRIC METHODOLOGY Biometry - methods Biostatistics Genetic Association Studies - statistics & numerical data Genetic association study Genetic research Humans Joint regression model Likelihood Functions Models, Genetic Models, Statistical Peptides, Cyclic - immunology Pleiotropic analysis Polymorphism, Single Nucleotide Qualitative trait Quantitative trait Quantitative Trait Loci Regression Analysis Stratified sample |
title | A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Joint%20Regression%20Analysis%20for%20Genetic%20Association%20Studies%20with%20Outcome%20Stratified%20Samples&rft.jtitle=Biometrics&rft.au=Wu,%20Colin%20O.&rft.date=2013-06&rft.volume=69&rft.issue=2&rft.spage=417&rft.epage=426&rft.pages=417-426&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/biom.12012&rft_dat=%3Cjstor_proqu%3E44695258%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4172-25faf4bdf1210defdb2068b864510bada436ec7a13ec4e6eb4f7f563d33e46b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1370810425&rft_id=info:pmid/23489105&rft_jstor_id=44695258&rfr_iscdi=true |