Loading…
Imaging characteristics of Zernike and annular polynomial aberrations
The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulati...
Saved in:
Published in: | Applied optics (2004) 2013-04, Vol.52 (10), p.2062-2074 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613 |
container_end_page | 2074 |
container_issue | 10 |
container_start_page | 2062 |
container_title | Applied optics (2004) |
container_volume | 52 |
creator | Mahajan, Virendra N Díaz, José Antonio |
description | The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples. |
doi_str_mv | 10.1364/AO.52.002062 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372623846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372623846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EoqWwMaOMDKTYrz9ijxUqUKlSF5AQi-U4TjEkTrGTof-eoBaG093w6IYHoWuC54QKdr_YzDnMMQYs4ARNgXCeUyL4KZqOU-UE5NsEXaT0iTHlTBXnaALj4EqQKVquWrP1YZvZDxON7V30qfc2ZV2dvbsY_JfLTKjGhKExMdt1zT50rTdNZkoXo-l9F9IlOqtNk9zVsWfo9XH58vCcrzdPq4fFOrcUWJ_XFCvOCStrVTLFGTBZGKiJLAspnWUCbKEUUMwqsIyRosLCSsOJUxSsIHSGbg-_u9h9Dy71uvXJuqYxwXVD0oQWIIBKJkb07oDa2KUUXa130bcm7jXB-lecXmw0B30QN-I3x-ehbF31D_-Zoj8WRGc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372623846</pqid></control><display><type>article</type><title>Imaging characteristics of Zernike and annular polynomial aberrations</title><source>Optica Publishing Group Journals</source><creator>Mahajan, Virendra N ; Díaz, José Antonio</creator><creatorcontrib>Mahajan, Virendra N ; Díaz, José Antonio</creatorcontrib><description>The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.52.002062</identifier><identifier>PMID: 23545961</identifier><language>eng</language><publisher>United States</publisher><subject>Aberration</subject><ispartof>Applied optics (2004), 2013-04, Vol.52 (10), p.2062-2074</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613</citedby><cites>FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23545961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahajan, Virendra N</creatorcontrib><creatorcontrib>Díaz, José Antonio</creatorcontrib><title>Imaging characteristics of Zernike and annular polynomial aberrations</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.</description><subject>Aberration</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EoqWwMaOMDKTYrz9ijxUqUKlSF5AQi-U4TjEkTrGTof-eoBaG093w6IYHoWuC54QKdr_YzDnMMQYs4ARNgXCeUyL4KZqOU-UE5NsEXaT0iTHlTBXnaALj4EqQKVquWrP1YZvZDxON7V30qfc2ZV2dvbsY_JfLTKjGhKExMdt1zT50rTdNZkoXo-l9F9IlOqtNk9zVsWfo9XH58vCcrzdPq4fFOrcUWJ_XFCvOCStrVTLFGTBZGKiJLAspnWUCbKEUUMwqsIyRosLCSsOJUxSsIHSGbg-_u9h9Dy71uvXJuqYxwXVD0oQWIIBKJkb07oDa2KUUXa130bcm7jXB-lecXmw0B30QN-I3x-ehbF31D_-Zoj8WRGc8</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Mahajan, Virendra N</creator><creator>Díaz, José Antonio</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Imaging characteristics of Zernike and annular polynomial aberrations</title><author>Mahajan, Virendra N ; Díaz, José Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aberration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahajan, Virendra N</creatorcontrib><creatorcontrib>Díaz, José Antonio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahajan, Virendra N</au><au>Díaz, José Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging characteristics of Zernike and annular polynomial aberrations</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>52</volume><issue>10</issue><spage>2062</spage><epage>2074</epage><pages>2062-2074</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.</abstract><cop>United States</cop><pmid>23545961</pmid><doi>10.1364/AO.52.002062</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2013-04, Vol.52 (10), p.2062-2074 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372623846 |
source | Optica Publishing Group Journals |
subjects | Aberration |
title | Imaging characteristics of Zernike and annular polynomial aberrations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20characteristics%20of%20Zernike%20and%20annular%20polynomial%20aberrations&rft.jtitle=Applied%20optics%20(2004)&rft.au=Mahajan,%20Virendra%20N&rft.date=2013-04-01&rft.volume=52&rft.issue=10&rft.spage=2062&rft.epage=2074&rft.pages=2062-2074&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.52.002062&rft_dat=%3Cproquest_cross%3E1372623846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1372623846&rft_id=info:pmid/23545961&rfr_iscdi=true |