Loading…

Imaging characteristics of Zernike and annular polynomial aberrations

The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulati...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2013-04, Vol.52 (10), p.2062-2074
Main Authors: Mahajan, Virendra N, Díaz, José Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613
cites cdi_FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613
container_end_page 2074
container_issue 10
container_start_page 2062
container_title Applied optics (2004)
container_volume 52
creator Mahajan, Virendra N
Díaz, José Antonio
description The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.
doi_str_mv 10.1364/AO.52.002062
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372623846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372623846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EoqWwMaOMDKTYrz9ijxUqUKlSF5AQi-U4TjEkTrGTof-eoBaG093w6IYHoWuC54QKdr_YzDnMMQYs4ARNgXCeUyL4KZqOU-UE5NsEXaT0iTHlTBXnaALj4EqQKVquWrP1YZvZDxON7V30qfc2ZV2dvbsY_JfLTKjGhKExMdt1zT50rTdNZkoXo-l9F9IlOqtNk9zVsWfo9XH58vCcrzdPq4fFOrcUWJ_XFCvOCStrVTLFGTBZGKiJLAspnWUCbKEUUMwqsIyRosLCSsOJUxSsIHSGbg-_u9h9Dy71uvXJuqYxwXVD0oQWIIBKJkb07oDa2KUUXa130bcm7jXB-lecXmw0B30QN-I3x-ehbF31D_-Zoj8WRGc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372623846</pqid></control><display><type>article</type><title>Imaging characteristics of Zernike and annular polynomial aberrations</title><source>Optica Publishing Group Journals</source><creator>Mahajan, Virendra N ; Díaz, José Antonio</creator><creatorcontrib>Mahajan, Virendra N ; Díaz, José Antonio</creatorcontrib><description>The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.52.002062</identifier><identifier>PMID: 23545961</identifier><language>eng</language><publisher>United States</publisher><subject>Aberration</subject><ispartof>Applied optics (2004), 2013-04, Vol.52 (10), p.2062-2074</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613</citedby><cites>FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23545961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahajan, Virendra N</creatorcontrib><creatorcontrib>Díaz, José Antonio</creatorcontrib><title>Imaging characteristics of Zernike and annular polynomial aberrations</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.</description><subject>Aberration</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EoqWwMaOMDKTYrz9ijxUqUKlSF5AQi-U4TjEkTrGTof-eoBaG093w6IYHoWuC54QKdr_YzDnMMQYs4ARNgXCeUyL4KZqOU-UE5NsEXaT0iTHlTBXnaALj4EqQKVquWrP1YZvZDxON7V30qfc2ZV2dvbsY_JfLTKjGhKExMdt1zT50rTdNZkoXo-l9F9IlOqtNk9zVsWfo9XH58vCcrzdPq4fFOrcUWJ_XFCvOCStrVTLFGTBZGKiJLAspnWUCbKEUUMwqsIyRosLCSsOJUxSsIHSGbg-_u9h9Dy71uvXJuqYxwXVD0oQWIIBKJkb07oDa2KUUXa130bcm7jXB-lecXmw0B30QN-I3x-ehbF31D_-Zoj8WRGc8</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Mahajan, Virendra N</creator><creator>Díaz, José Antonio</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Imaging characteristics of Zernike and annular polynomial aberrations</title><author>Mahajan, Virendra N ; Díaz, José Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aberration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahajan, Virendra N</creatorcontrib><creatorcontrib>Díaz, José Antonio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahajan, Virendra N</au><au>Díaz, José Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging characteristics of Zernike and annular polynomial aberrations</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>52</volume><issue>10</issue><spage>2062</spage><epage>2074</epage><pages>2062-2074</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.</abstract><cop>United States</cop><pmid>23545961</pmid><doi>10.1364/AO.52.002062</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2013-04, Vol.52 (10), p.2062-2074
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_miscellaneous_1372623846
source Optica Publishing Group Journals
subjects Aberration
title Imaging characteristics of Zernike and annular polynomial aberrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20characteristics%20of%20Zernike%20and%20annular%20polynomial%20aberrations&rft.jtitle=Applied%20optics%20(2004)&rft.au=Mahajan,%20Virendra%20N&rft.date=2013-04-01&rft.volume=52&rft.issue=10&rft.spage=2062&rft.epage=2074&rft.pages=2062-2074&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.52.002062&rft_dat=%3Cproquest_cross%3E1372623846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-f3095514bf9b49542487a2f18b788ec462c7992304d2c4417d06c8a51e932c613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1372623846&rft_id=info:pmid/23545961&rfr_iscdi=true