Loading…
Controlled deposition of new organic ultrathin film as a gate dielectric layer for advanced flexible capacitor devices
This letter describes a new organic (1-bromoadamantane) ultrathin film as gate dielectric, which was successfully deposited by sol–gel spin-coating process on a flexible polyimide substrate at room temperature. The metal–insulator-metal (MIM) device with organic (1-bromoadamantane) ultrathin (10 nm)...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2013-06, Vol.24 (6), p.1807-1812 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This letter describes a new organic (1-bromoadamantane) ultrathin film as gate dielectric, which was successfully deposited by sol–gel spin-coating process on a flexible polyimide substrate at room temperature. The metal–insulator-metal (MIM) device with organic (1-bromoadamantane) ultrathin (10 nm) film as gate dielectric layer operated at gate voltage of 5.0 V, showing a low leakage current density (5.63 × 10
−10
A cm
−2
at 5 V) and good capacitance (2.01 fF μm
−2
at 1 MHz). The chemical structure of the 1-bromoadamantane layer was investigated by Fourier transform infrared spectrometer. The excellent leakage current density and better capacitance, probably due to the presence of polar, non-polar, low-polar groups, and bromine atoms in ultrathin film. Practical properties of the film in MIM capacitor such as dielectric constant as well as bending result of leakage current density and breakdown voltage have been better related to such fundamental adhesion nature over flexible substrate. This permits estimation of the properties of new dielectric in thin film form and short lists of the best materials for low loss and good capacitance flexible capacitors could be drawn up in future. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-012-1016-y |