Loading…

Identifying intrinsic and reflexive contributions to low-back stabilization

Abstract Motor control deficits have been suggested as potential cause and/or effect of a-specific chronic low-back pain and its recurrent behavior. Therefore, the goal of this study is to identify motor control in low-back stabilization by simultaneously quantifying the intrinsic and reflexive cont...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2013-05, Vol.46 (8), p.1440-1446
Main Authors: van Drunen, P, Maaswinkel, E, van der Helm, F.C.T, van Dieën, J.H, Happee, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-e1f5b7cc22166c4cb490d2e00566986a95e43302c5547a442725bbb8bd963e8e3
cites cdi_FETCH-LOGICAL-c532t-e1f5b7cc22166c4cb490d2e00566986a95e43302c5547a442725bbb8bd963e8e3
container_end_page 1446
container_issue 8
container_start_page 1440
container_title Journal of biomechanics
container_volume 46
creator van Drunen, P
Maaswinkel, E
van der Helm, F.C.T
van Dieën, J.H
Happee, R
description Abstract Motor control deficits have been suggested as potential cause and/or effect of a-specific chronic low-back pain and its recurrent behavior. Therefore, the goal of this study is to identify motor control in low-back stabilization by simultaneously quantifying the intrinsic and reflexive contributions. Upper body sway was evoked using continuous force perturbations at the trunk, while subjects performed a resist or relax task. Frequency response functions (FRFs) and coherences of the admittance (kinematics) and reflexes (sEMG) were obtained. In comparison with the relax task, the resist task resulted in a 61% decrease in admittance and a 73% increase in reflex gain below 1.1 Hz. Intrinsic and reflexive contributions were captured by a physiologically-based, neuromuscular model, including proprioceptive feedback from muscle spindles (position and velocity) and Golgi tendon organs (force). This model described on average 90% of the variance in kinematics and 39% of the variance in sEMG, while resulting parameter values were consistent over subjects.
doi_str_mv 10.1016/j.jbiomech.2013.03.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372635345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929013001231</els_id><sourcerecordid>1372635345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-e1f5b7cc22166c4cb490d2e00566986a95e43302c5547a442725bbb8bd963e8e3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhL1SRuHDJMv5OLghUUahaiUPL2bKdWXCatUuctCy_vo62pVIvII00h3nmHc28Q8gRhTUFqt73696FtEX_c82A8jWUAP2MrGijec14A8_JCoDRumUtHJBXOfdQCKHbl-SAcakbwZsVOTvtME5hswvxRxXiNIaYg69s7KoRNwP-DjdY-bQU3DyFFHM1pWpIt7Wz_qrKk3VhCH_sUnpNXmzskPHNfT4k308-Xx5_rc-_fTk9_nRee8nZVCPdSKe9Z4wq5YV3ooWOIYBUqm2UbSUKzoF5KYW2QjDNpHOucV2rODbID8m7ve71mH7NmCezDdnjMNiIac6Gcs0Ul1zI_0BFUW8YVwV9-wTt0zzGsshCKapF20Kh1J7yY8q5nMhcj2Frx52hYBZnTG8enDGLMwZKgC6NR_fys9ti97ftwYoCfNwDWE53E3A02QeMHrswop9Ml8K_Z3x4IuGHEIO3wxXuMD_uYzIzYC6W_1jeg3IAyjjld3vtth4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346174990</pqid></control><display><type>article</type><title>Identifying intrinsic and reflexive contributions to low-back stabilization</title><source>Elsevier</source><creator>van Drunen, P ; Maaswinkel, E ; van der Helm, F.C.T ; van Dieën, J.H ; Happee, R</creator><creatorcontrib>van Drunen, P ; Maaswinkel, E ; van der Helm, F.C.T ; van Dieën, J.H ; Happee, R</creatorcontrib><description>Abstract Motor control deficits have been suggested as potential cause and/or effect of a-specific chronic low-back pain and its recurrent behavior. Therefore, the goal of this study is to identify motor control in low-back stabilization by simultaneously quantifying the intrinsic and reflexive contributions. Upper body sway was evoked using continuous force perturbations at the trunk, while subjects performed a resist or relax task. Frequency response functions (FRFs) and coherences of the admittance (kinematics) and reflexes (sEMG) were obtained. In comparison with the relax task, the resist task resulted in a 61% decrease in admittance and a 73% increase in reflex gain below 1.1 Hz. Intrinsic and reflexive contributions were captured by a physiologically-based, neuromuscular model, including proprioceptive feedback from muscle spindles (position and velocity) and Golgi tendon organs (force). This model described on average 90% of the variance in kinematics and 39% of the variance in sEMG, while resulting parameter values were consistent over subjects.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2013.03.007</identifier><identifier>PMID: 23578438</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Admittance ; Adult ; Back - physiology ; Biomechanical Phenomena ; Electrical impedance ; Electromyography - methods ; Experiments ; Feedback ; Golgi tendon organ ; Humans ; Low Back Pain - physiopathology ; Lumbar Spine ; Mathematical models ; Middle Aged ; Motors ; Muscle spindles ; Muscle, Skeletal - physiology ; Physical Medicine and Rehabilitation ; Postural control ; Posture - physiology ; Reflex, Stretch - physiology ; Resists ; Stabilization ; Studies ; System identification ; Tasks ; Variance</subject><ispartof>Journal of biomechanics, 2013-05, Vol.46 (8), p.1440-1446</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-e1f5b7cc22166c4cb490d2e00566986a95e43302c5547a442725bbb8bd963e8e3</citedby><cites>FETCH-LOGICAL-c532t-e1f5b7cc22166c4cb490d2e00566986a95e43302c5547a442725bbb8bd963e8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23578438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Drunen, P</creatorcontrib><creatorcontrib>Maaswinkel, E</creatorcontrib><creatorcontrib>van der Helm, F.C.T</creatorcontrib><creatorcontrib>van Dieën, J.H</creatorcontrib><creatorcontrib>Happee, R</creatorcontrib><title>Identifying intrinsic and reflexive contributions to low-back stabilization</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Motor control deficits have been suggested as potential cause and/or effect of a-specific chronic low-back pain and its recurrent behavior. Therefore, the goal of this study is to identify motor control in low-back stabilization by simultaneously quantifying the intrinsic and reflexive contributions. Upper body sway was evoked using continuous force perturbations at the trunk, while subjects performed a resist or relax task. Frequency response functions (FRFs) and coherences of the admittance (kinematics) and reflexes (sEMG) were obtained. In comparison with the relax task, the resist task resulted in a 61% decrease in admittance and a 73% increase in reflex gain below 1.1 Hz. Intrinsic and reflexive contributions were captured by a physiologically-based, neuromuscular model, including proprioceptive feedback from muscle spindles (position and velocity) and Golgi tendon organs (force). This model described on average 90% of the variance in kinematics and 39% of the variance in sEMG, while resulting parameter values were consistent over subjects.</description><subject>Admittance</subject><subject>Adult</subject><subject>Back - physiology</subject><subject>Biomechanical Phenomena</subject><subject>Electrical impedance</subject><subject>Electromyography - methods</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Golgi tendon organ</subject><subject>Humans</subject><subject>Low Back Pain - physiopathology</subject><subject>Lumbar Spine</subject><subject>Mathematical models</subject><subject>Middle Aged</subject><subject>Motors</subject><subject>Muscle spindles</subject><subject>Muscle, Skeletal - physiology</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Postural control</subject><subject>Posture - physiology</subject><subject>Reflex, Stretch - physiology</subject><subject>Resists</subject><subject>Stabilization</subject><subject>Studies</subject><subject>System identification</subject><subject>Tasks</subject><subject>Variance</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EokvhL1SRuHDJMv5OLghUUahaiUPL2bKdWXCatUuctCy_vo62pVIvII00h3nmHc28Q8gRhTUFqt73696FtEX_c82A8jWUAP2MrGijec14A8_JCoDRumUtHJBXOfdQCKHbl-SAcakbwZsVOTvtME5hswvxRxXiNIaYg69s7KoRNwP-DjdY-bQU3DyFFHM1pWpIt7Wz_qrKk3VhCH_sUnpNXmzskPHNfT4k308-Xx5_rc-_fTk9_nRee8nZVCPdSKe9Z4wq5YV3ooWOIYBUqm2UbSUKzoF5KYW2QjDNpHOucV2rODbID8m7ve71mH7NmCezDdnjMNiIac6Gcs0Ul1zI_0BFUW8YVwV9-wTt0zzGsshCKapF20Kh1J7yY8q5nMhcj2Frx52hYBZnTG8enDGLMwZKgC6NR_fys9ti97ftwYoCfNwDWE53E3A02QeMHrswop9Ml8K_Z3x4IuGHEIO3wxXuMD_uYzIzYC6W_1jeg3IAyjjld3vtth4</recordid><startdate>20130531</startdate><enddate>20130531</enddate><creator>van Drunen, P</creator><creator>Maaswinkel, E</creator><creator>van der Helm, F.C.T</creator><creator>van Dieën, J.H</creator><creator>Happee, R</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20130531</creationdate><title>Identifying intrinsic and reflexive contributions to low-back stabilization</title><author>van Drunen, P ; Maaswinkel, E ; van der Helm, F.C.T ; van Dieën, J.H ; Happee, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-e1f5b7cc22166c4cb490d2e00566986a95e43302c5547a442725bbb8bd963e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Admittance</topic><topic>Adult</topic><topic>Back - physiology</topic><topic>Biomechanical Phenomena</topic><topic>Electrical impedance</topic><topic>Electromyography - methods</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Golgi tendon organ</topic><topic>Humans</topic><topic>Low Back Pain - physiopathology</topic><topic>Lumbar Spine</topic><topic>Mathematical models</topic><topic>Middle Aged</topic><topic>Motors</topic><topic>Muscle spindles</topic><topic>Muscle, Skeletal - physiology</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Postural control</topic><topic>Posture - physiology</topic><topic>Reflex, Stretch - physiology</topic><topic>Resists</topic><topic>Stabilization</topic><topic>Studies</topic><topic>System identification</topic><topic>Tasks</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Drunen, P</creatorcontrib><creatorcontrib>Maaswinkel, E</creatorcontrib><creatorcontrib>van der Helm, F.C.T</creatorcontrib><creatorcontrib>van Dieën, J.H</creatorcontrib><creatorcontrib>Happee, R</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Drunen, P</au><au>Maaswinkel, E</au><au>van der Helm, F.C.T</au><au>van Dieën, J.H</au><au>Happee, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying intrinsic and reflexive contributions to low-back stabilization</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2013-05-31</date><risdate>2013</risdate><volume>46</volume><issue>8</issue><spage>1440</spage><epage>1446</epage><pages>1440-1446</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Motor control deficits have been suggested as potential cause and/or effect of a-specific chronic low-back pain and its recurrent behavior. Therefore, the goal of this study is to identify motor control in low-back stabilization by simultaneously quantifying the intrinsic and reflexive contributions. Upper body sway was evoked using continuous force perturbations at the trunk, while subjects performed a resist or relax task. Frequency response functions (FRFs) and coherences of the admittance (kinematics) and reflexes (sEMG) were obtained. In comparison with the relax task, the resist task resulted in a 61% decrease in admittance and a 73% increase in reflex gain below 1.1 Hz. Intrinsic and reflexive contributions were captured by a physiologically-based, neuromuscular model, including proprioceptive feedback from muscle spindles (position and velocity) and Golgi tendon organs (force). This model described on average 90% of the variance in kinematics and 39% of the variance in sEMG, while resulting parameter values were consistent over subjects.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>23578438</pmid><doi>10.1016/j.jbiomech.2013.03.007</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2013-05, Vol.46 (8), p.1440-1446
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_1372635345
source Elsevier
subjects Admittance
Adult
Back - physiology
Biomechanical Phenomena
Electrical impedance
Electromyography - methods
Experiments
Feedback
Golgi tendon organ
Humans
Low Back Pain - physiopathology
Lumbar Spine
Mathematical models
Middle Aged
Motors
Muscle spindles
Muscle, Skeletal - physiology
Physical Medicine and Rehabilitation
Postural control
Posture - physiology
Reflex, Stretch - physiology
Resists
Stabilization
Studies
System identification
Tasks
Variance
title Identifying intrinsic and reflexive contributions to low-back stabilization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20intrinsic%20and%20reflexive%20contributions%20to%20low-back%20stabilization&rft.jtitle=Journal%20of%20biomechanics&rft.au=van%20Drunen,%20P&rft.date=2013-05-31&rft.volume=46&rft.issue=8&rft.spage=1440&rft.epage=1446&rft.pages=1440-1446&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2013.03.007&rft_dat=%3Cproquest_cross%3E1372635345%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-e1f5b7cc22166c4cb490d2e00566986a95e43302c5547a442725bbb8bd963e8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1346174990&rft_id=info:pmid/23578438&rfr_iscdi=true