Loading…

Power Lindley distribution and associated inference

A new two-parameter power Lindley distribution is introduced and its properties are discussed. These include the shapes of the density and hazard rate functions, the moments, skewness and kurtosis measures, the quantile function, and the limiting distributions of order statistics. Maximum likelihood...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2013-08, Vol.64, p.20-33
Main Authors: Ghitany, M.E., Al-Mutairi, D.K., Balakrishnan, N., Al-Enezi, L.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-39d018fd6c489f3fd52e8b7b529e1d0b626cde2f92c0ad15c7c52b57c48142193
cites cdi_FETCH-LOGICAL-c333t-39d018fd6c489f3fd52e8b7b529e1d0b626cde2f92c0ad15c7c52b57c48142193
container_end_page 33
container_issue
container_start_page 20
container_title Computational statistics & data analysis
container_volume 64
creator Ghitany, M.E.
Al-Mutairi, D.K.
Balakrishnan, N.
Al-Enezi, L.J.
description A new two-parameter power Lindley distribution is introduced and its properties are discussed. These include the shapes of the density and hazard rate functions, the moments, skewness and kurtosis measures, the quantile function, and the limiting distributions of order statistics. Maximum likelihood estimation of the parameters and their estimated asymptotic standard errors are derived. Three algorithms are proposed for generating random data from the proposed distribution. A simulation study is carried out to examine the bias and mean square error of the maximum likelihood estimators of the parameters as well as the coverage probability and the width of the confidence interval for each parameter. An application of the model to a real data set is presented finally and compared with the fit attained by some other well-known two-parameter distributions.
doi_str_mv 10.1016/j.csda.2013.02.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372635389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313000820</els_id><sourcerecordid>1372635389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-39d018fd6c489f3fd52e8b7b529e1d0b626cde2f92c0ad15c7c52b57c48142193</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKsu3bQmL03SghsZdBQGdKHrkCYvkKHTjElHmb-3ZVwLF97mnAf3EnLLaMUok_fbymZnKqCMVxSmyDOyYI2CUnEB52QxQapsa8UvyVXOW0op1KpZEP4efzAVmzC4Ho-FC3lMoTuMIQ6FGVxhco42mBFdEQaPCQeL1-TCmz7jzd9dks_np4_VS7l5W7-uHjel5ZyPJW8dZY130tZN67l3ArDpVCegReZoJ0Fah-BbsNQ4JqyyAjqhJpzVwFq-JHenv_sUvw6YR70L2WLfmwHjIWvGFUgueDOjcEJtijkn9Hqfws6ko2ZUzwvprZ4X0vNCmsIUOUkPJwmnEt8Bk842zAVdSGhH7WL4T_8FX4Vujg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372635389</pqid></control><display><type>article</type><title>Power Lindley distribution and associated inference</title><source>Elsevier</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Ghitany, M.E. ; Al-Mutairi, D.K. ; Balakrishnan, N. ; Al-Enezi, L.J.</creator><creatorcontrib>Ghitany, M.E. ; Al-Mutairi, D.K. ; Balakrishnan, N. ; Al-Enezi, L.J.</creatorcontrib><description>A new two-parameter power Lindley distribution is introduced and its properties are discussed. These include the shapes of the density and hazard rate functions, the moments, skewness and kurtosis measures, the quantile function, and the limiting distributions of order statistics. Maximum likelihood estimation of the parameters and their estimated asymptotic standard errors are derived. Three algorithms are proposed for generating random data from the proposed distribution. A simulation study is carried out to examine the bias and mean square error of the maximum likelihood estimators of the parameters as well as the coverage probability and the width of the confidence interval for each parameter. An application of the model to a real data set is presented finally and compared with the fit attained by some other well-known two-parameter distributions.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.02.026</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Asymptotic properties ; Computer simulation ; Density ; Inference ; Lambert function ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimator ; Power Lindley distribution ; Simulation algorithms ; Statistics</subject><ispartof>Computational statistics &amp; data analysis, 2013-08, Vol.64, p.20-33</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-39d018fd6c489f3fd52e8b7b529e1d0b626cde2f92c0ad15c7c52b57c48142193</citedby><cites>FETCH-LOGICAL-c333t-39d018fd6c489f3fd52e8b7b529e1d0b626cde2f92c0ad15c7c52b57c48142193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947313000820$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3438,3562,27923,27924,45971,45990,46002</link.rule.ids></links><search><creatorcontrib>Ghitany, M.E.</creatorcontrib><creatorcontrib>Al-Mutairi, D.K.</creatorcontrib><creatorcontrib>Balakrishnan, N.</creatorcontrib><creatorcontrib>Al-Enezi, L.J.</creatorcontrib><title>Power Lindley distribution and associated inference</title><title>Computational statistics &amp; data analysis</title><description>A new two-parameter power Lindley distribution is introduced and its properties are discussed. These include the shapes of the density and hazard rate functions, the moments, skewness and kurtosis measures, the quantile function, and the limiting distributions of order statistics. Maximum likelihood estimation of the parameters and their estimated asymptotic standard errors are derived. Three algorithms are proposed for generating random data from the proposed distribution. A simulation study is carried out to examine the bias and mean square error of the maximum likelihood estimators of the parameters as well as the coverage probability and the width of the confidence interval for each parameter. An application of the model to a real data set is presented finally and compared with the fit attained by some other well-known two-parameter distributions.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Inference</subject><subject>Lambert function</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimator</subject><subject>Power Lindley distribution</subject><subject>Simulation algorithms</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gKsu3bQmL03SghsZdBQGdKHrkCYvkKHTjElHmb-3ZVwLF97mnAf3EnLLaMUok_fbymZnKqCMVxSmyDOyYI2CUnEB52QxQapsa8UvyVXOW0op1KpZEP4efzAVmzC4Ho-FC3lMoTuMIQ6FGVxhco42mBFdEQaPCQeL1-TCmz7jzd9dks_np4_VS7l5W7-uHjel5ZyPJW8dZY130tZN67l3ArDpVCegReZoJ0Fah-BbsNQ4JqyyAjqhJpzVwFq-JHenv_sUvw6YR70L2WLfmwHjIWvGFUgueDOjcEJtijkn9Hqfws6ko2ZUzwvprZ4X0vNCmsIUOUkPJwmnEt8Bk842zAVdSGhH7WL4T_8FX4Vujg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Ghitany, M.E.</creator><creator>Al-Mutairi, D.K.</creator><creator>Balakrishnan, N.</creator><creator>Al-Enezi, L.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130801</creationdate><title>Power Lindley distribution and associated inference</title><author>Ghitany, M.E. ; Al-Mutairi, D.K. ; Balakrishnan, N. ; Al-Enezi, L.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-39d018fd6c489f3fd52e8b7b529e1d0b626cde2f92c0ad15c7c52b57c48142193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Inference</topic><topic>Lambert function</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimator</topic><topic>Power Lindley distribution</topic><topic>Simulation algorithms</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghitany, M.E.</creatorcontrib><creatorcontrib>Al-Mutairi, D.K.</creatorcontrib><creatorcontrib>Balakrishnan, N.</creatorcontrib><creatorcontrib>Al-Enezi, L.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghitany, M.E.</au><au>Al-Mutairi, D.K.</au><au>Balakrishnan, N.</au><au>Al-Enezi, L.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Lindley distribution and associated inference</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>64</volume><spage>20</spage><epage>33</epage><pages>20-33</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>A new two-parameter power Lindley distribution is introduced and its properties are discussed. These include the shapes of the density and hazard rate functions, the moments, skewness and kurtosis measures, the quantile function, and the limiting distributions of order statistics. Maximum likelihood estimation of the parameters and their estimated asymptotic standard errors are derived. Three algorithms are proposed for generating random data from the proposed distribution. A simulation study is carried out to examine the bias and mean square error of the maximum likelihood estimators of the parameters as well as the coverage probability and the width of the confidence interval for each parameter. An application of the model to a real data set is presented finally and compared with the fit attained by some other well-known two-parameter distributions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2013.02.026</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2013-08, Vol.64, p.20-33
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1372635389
source Elsevier; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Backfile Package - Decision Sciences [YDT]
subjects Algorithms
Asymptotic properties
Computer simulation
Density
Inference
Lambert function
Mathematical analysis
Mathematical models
Maximum likelihood estimator
Power Lindley distribution
Simulation algorithms
Statistics
title Power Lindley distribution and associated inference
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Lindley%20distribution%20and%20associated%20inference&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Ghitany,%20M.E.&rft.date=2013-08-01&rft.volume=64&rft.spage=20&rft.epage=33&rft.pages=20-33&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.02.026&rft_dat=%3Cproquest_cross%3E1372635389%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-39d018fd6c489f3fd52e8b7b529e1d0b626cde2f92c0ad15c7c52b57c48142193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1372635389&rft_id=info:pmid/&rfr_iscdi=true