Loading…
Diffusion-reaction compromise the polymorphs of precipitated calcium carbonate
Diffusion is seldom considered by chemists and materialists in the preparation of materials while it plays an important role in the field of chemical engineering. If we look at crystallization at the atomic level, crystal growth in a solution starts from the diffusion of ions to the growing surface...
Saved in:
Published in: | Particuology 2013-06, Vol.11 (3), p.301-308 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diffusion is seldom considered by chemists and materialists in the preparation of materials while it plays an important role in the field of chemical engineering. If we look at crystallization at the atomic level, crystal growth in a solution starts from the diffusion of ions to the growing surface followed by the incorporation of ions into its lattice. Diffusion can be a rate determining step for the growth of crystals. In this paper, we take the crystallization of calcium carbonate as an example to illustrate the microscopic processes of diffusion and reaction and their compromising influence on the morphology of the crystals produced. The diffusion effect is studied in a specially designed three-cell reactor. Experiments show that a decrease of diffusion leads to retardation of supersaturation and the formation of a continuous concen- tration gradient in the reaction cell, thus promoting the formation of cubic calcite particles. The reaction rate is regulated by temperature. Increase of reaction rate favors the formation of needle-like aragonite particles. When diffusion and reaction play joint roles in the reaction system, their compromise dominates the formation of products, leading to a mixture of cubic and needle-like particles with a controllable ratio. Since diffusion and reaction are universal factors in the preparation of materials, the finding of this paper could be helpful in the controlled synthesis of other materials. |
---|---|
ISSN: | 1674-2001 2210-4291 |
DOI: | 10.1016/j.partic.2012.10.003 |