Loading…
Detecting and locating damage initiation and progression in full-scale sandwich composite fuselage panels using acoustic emission
In this study, acoustic emission was evaluated as a supplementary nondestructive testing method for detecting damage initiation and progression, identifying the site of damage, and anticipating ultimate fracture in notched full-scale honeycomb sandwich composite fuselage panels using redundant array...
Saved in:
Published in: | Journal of composite materials 2013-06, Vol.47 (13), p.1643-1664 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, acoustic emission was evaluated as a supplementary nondestructive testing method for detecting damage initiation and progression, identifying the site of damage, and anticipating ultimate fracture in notched full-scale honeycomb sandwich composite fuselage panels using redundant arrays of different acoustic emission sensor models. Each panel contained different damage scenarios and was subjected to combinations of quasi-static hoop and longitudinal loads. Damage progression and location were characterized with various inspection techniques, and the acoustic emission results were correlated with photogrammetric strain fields. Applying post-test signal processing, acoustic emission accurately detected notch tip damage initiation and tracked its progression to ultimate failure. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/0021998312450306 |