Loading…
Contact forces of polyhedral particles in discrete element method
A general contact force law for arbitrarily shaped bodies is presented. At first an advanced contact force law is derived from the well know Hertz contact law. The obtained formulation of the Hertz contact law can be applied to the contact of arbitrarily shaped bodies. In a second step this contact...
Saved in:
Published in: | Granular matter 2013-06, Vol.15 (3), p.349-355 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A general contact force law for arbitrarily shaped bodies is presented. At first an advanced contact force law is derived from the well know Hertz contact law. The obtained formulation of the Hertz contact law can be applied to the contact of arbitrarily shaped bodies. In a second step this contact model is applied to the contacts among polyhedral particles. The results are compared to finite element simulations. The model is extended by terms for damping and friction. The behaviour of the damping and friction model are demonstrated with simple examples. The force law is then implemented in the discrete element method (DEM). The application of this DEM is demonstrated by a simulation of the particle movement in a mixer. |
---|---|
ISSN: | 1434-5021 1434-7636 |
DOI: | 10.1007/s10035-013-0417-9 |