Loading…
Guaifenesin Derivatives Promote Neurite Outgrowth and Protect Diabetic Mice from Neuropathy
In diabetic patients, an early index of peripheral neuropathy is the slowing of conduction velocity in large myelinated neurons and a lack of understanding of the basic pathogenic mechanisms hindered therapeutics development. Racemic (R/S)-guaifenesin (1) was identified as a potent enhancer of neuri...
Saved in:
Published in: | Journal of medicinal chemistry 2013-06, Vol.56 (12), p.5071-5078 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In diabetic patients, an early index of peripheral neuropathy is the slowing of conduction velocity in large myelinated neurons and a lack of understanding of the basic pathogenic mechanisms hindered therapeutics development. Racemic (R/S)-guaifenesin (1) was identified as a potent enhancer of neurite outgrowth using an in vitro screen. Its R-enantiomer (R)-1 carried the most biological activity, whereas the S-enantiomer (S)-1 was inactive. Focused structural variations to (R/S)-1 was conducted to identify potentially essential groups for the neurite outgrowth activity. In vivo therapeutic studies indicated that both (R/S)-1 and (R)-1 partially prevented motor nerve conduction velocity slowing in a mouse model of type 1 diabetes. In vitro microsomal assays suggested that compounds (R)-1 and (S)-1 are not metabolized rapidly, and PAMPA assay indicated moderate permeability through the membrane. Findings revealed here could lead to the development of novel drugs for diabetic neuropathy. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm400401y |