Loading…

A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry

The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomi...

Full description

Saved in:
Bibliographic Details
Published in:Radiation protection dosimetry 2013-07, Vol.155 (3), p.253-267
Main Authors: Ainsbury, Elizabeth A, Vinnikov, Volodymyr A, Maznyk, Nataliya A, Lloyd, David C, Rothkamm, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3
cites cdi_FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3
container_end_page 267
container_issue 3
container_start_page 253
container_title Radiation protection dosimetry
container_volume 155
creator Ainsbury, Elizabeth A
Vinnikov, Volodymyr A
Maznyk, Nataliya A
Lloyd, David C
Rothkamm, Kai
description The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomial, beta, Neyman type-A and Hermite distributions are compared in terms of their applicability to 'real-life' radiation exposure situations. The identification of the most appropriate statistical model in each particular exposure situation more correctly characterises data. The results show that for acute, homogeneous (whole-body) exposures, the Poisson distribution can still give a good fit to the data. For localised partial-body exposures, the Neyman type-A model was found to be the most robust. Overall, no single distribution was found to be universally appropriate. A distribution-specific method of analysis of cytogenetic data is therefore recommended. Such an approach may lead potentially to more accurate biological dose estimates.
doi_str_mv 10.1093/rpd/ncs335
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372698120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372698120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3</originalsourceid><addsrcrecordid>eNo90EtLw0AQwPFFFFurFz-A7FGE2H0l2T2W4gsKXvQc9hVcSbJxJwH77U1N9TTD8GMOf4SuKbmnRPF16t26s8B5foKWtBQs44IUp2hJqBCZFIws0AXAJyGsVLk4RwvGOctLSZcINtjGttcpQOxwrDGEbwyDHgIMweoGu2lJwYxDiB3gOiasO93sIcBB248U2wix9Vgbn5I-MOz0oH9p0i7MJxOiixBaP6T9JTqrdQP-6jhX6P3x4W37nO1en162m11mmSyHTClChBO54rL20pHalKRQnFpf1owomhdKyVx6VzhWGCYIo4ZrY7nSyklm-Qrdzn_7FL9GD0PVBrC-aXTn4wgV5SUrlKSMTPRupjZFgOTrqk-h1WlfUVIdIldT5GqOPOGb49_RtN7907-q_Act4nrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372698120</pqid></control><display><type>article</type><title>A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry</title><source>Oxford Journals Online</source><creator>Ainsbury, Elizabeth A ; Vinnikov, Volodymyr A ; Maznyk, Nataliya A ; Lloyd, David C ; Rothkamm, Kai</creator><creatorcontrib>Ainsbury, Elizabeth A ; Vinnikov, Volodymyr A ; Maznyk, Nataliya A ; Lloyd, David C ; Rothkamm, Kai</creatorcontrib><description>The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomial, beta, Neyman type-A and Hermite distributions are compared in terms of their applicability to 'real-life' radiation exposure situations. The identification of the most appropriate statistical model in each particular exposure situation more correctly characterises data. The results show that for acute, homogeneous (whole-body) exposures, the Poisson distribution can still give a good fit to the data. For localised partial-body exposures, the Neyman type-A model was found to be the most robust. Overall, no single distribution was found to be universally appropriate. A distribution-specific method of analysis of cytogenetic data is therefore recommended. Such an approach may lead potentially to more accurate biological dose estimates.</description><identifier>ISSN: 0144-8420</identifier><identifier>EISSN: 1742-3406</identifier><identifier>DOI: 10.1093/rpd/ncs335</identifier><identifier>PMID: 23325781</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Bayes Theorem ; Chromosome Aberrations - radiation effects ; Chromosomes, Human - radiation effects ; Cytogenetics ; Environmental Exposure ; Humans ; Radiation Dosage ; Radiation Monitoring ; Radiometry ; Software ; Statistical Distributions</subject><ispartof>Radiation protection dosimetry, 2013-07, Vol.155 (3), p.253-267</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3</citedby><cites>FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23325781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ainsbury, Elizabeth A</creatorcontrib><creatorcontrib>Vinnikov, Volodymyr A</creatorcontrib><creatorcontrib>Maznyk, Nataliya A</creatorcontrib><creatorcontrib>Lloyd, David C</creatorcontrib><creatorcontrib>Rothkamm, Kai</creatorcontrib><title>A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry</title><title>Radiation protection dosimetry</title><addtitle>Radiat Prot Dosimetry</addtitle><description>The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomial, beta, Neyman type-A and Hermite distributions are compared in terms of their applicability to 'real-life' radiation exposure situations. The identification of the most appropriate statistical model in each particular exposure situation more correctly characterises data. The results show that for acute, homogeneous (whole-body) exposures, the Poisson distribution can still give a good fit to the data. For localised partial-body exposures, the Neyman type-A model was found to be the most robust. Overall, no single distribution was found to be universally appropriate. A distribution-specific method of analysis of cytogenetic data is therefore recommended. Such an approach may lead potentially to more accurate biological dose estimates.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Chromosome Aberrations - radiation effects</subject><subject>Chromosomes, Human - radiation effects</subject><subject>Cytogenetics</subject><subject>Environmental Exposure</subject><subject>Humans</subject><subject>Radiation Dosage</subject><subject>Radiation Monitoring</subject><subject>Radiometry</subject><subject>Software</subject><subject>Statistical Distributions</subject><issn>0144-8420</issn><issn>1742-3406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo90EtLw0AQwPFFFFurFz-A7FGE2H0l2T2W4gsKXvQc9hVcSbJxJwH77U1N9TTD8GMOf4SuKbmnRPF16t26s8B5foKWtBQs44IUp2hJqBCZFIws0AXAJyGsVLk4RwvGOctLSZcINtjGttcpQOxwrDGEbwyDHgIMweoGu2lJwYxDiB3gOiasO93sIcBB248U2wix9Vgbn5I-MOz0oH9p0i7MJxOiixBaP6T9JTqrdQP-6jhX6P3x4W37nO1en162m11mmSyHTClChBO54rL20pHalKRQnFpf1owomhdKyVx6VzhWGCYIo4ZrY7nSyklm-Qrdzn_7FL9GD0PVBrC-aXTn4wgV5SUrlKSMTPRupjZFgOTrqk-h1WlfUVIdIldT5GqOPOGb49_RtN7907-q_Act4nrw</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Ainsbury, Elizabeth A</creator><creator>Vinnikov, Volodymyr A</creator><creator>Maznyk, Nataliya A</creator><creator>Lloyd, David C</creator><creator>Rothkamm, Kai</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201307</creationdate><title>A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry</title><author>Ainsbury, Elizabeth A ; Vinnikov, Volodymyr A ; Maznyk, Nataliya A ; Lloyd, David C ; Rothkamm, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Chromosome Aberrations - radiation effects</topic><topic>Chromosomes, Human - radiation effects</topic><topic>Cytogenetics</topic><topic>Environmental Exposure</topic><topic>Humans</topic><topic>Radiation Dosage</topic><topic>Radiation Monitoring</topic><topic>Radiometry</topic><topic>Software</topic><topic>Statistical Distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ainsbury, Elizabeth A</creatorcontrib><creatorcontrib>Vinnikov, Volodymyr A</creatorcontrib><creatorcontrib>Maznyk, Nataliya A</creatorcontrib><creatorcontrib>Lloyd, David C</creatorcontrib><creatorcontrib>Rothkamm, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiation protection dosimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ainsbury, Elizabeth A</au><au>Vinnikov, Volodymyr A</au><au>Maznyk, Nataliya A</au><au>Lloyd, David C</au><au>Rothkamm, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry</atitle><jtitle>Radiation protection dosimetry</jtitle><addtitle>Radiat Prot Dosimetry</addtitle><date>2013-07</date><risdate>2013</risdate><volume>155</volume><issue>3</issue><spage>253</spage><epage>267</epage><pages>253-267</pages><issn>0144-8420</issn><eissn>1742-3406</eissn><abstract>The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomial, beta, Neyman type-A and Hermite distributions are compared in terms of their applicability to 'real-life' radiation exposure situations. The identification of the most appropriate statistical model in each particular exposure situation more correctly characterises data. The results show that for acute, homogeneous (whole-body) exposures, the Poisson distribution can still give a good fit to the data. For localised partial-body exposures, the Neyman type-A model was found to be the most robust. Overall, no single distribution was found to be universally appropriate. A distribution-specific method of analysis of cytogenetic data is therefore recommended. Such an approach may lead potentially to more accurate biological dose estimates.</abstract><cop>England</cop><pmid>23325781</pmid><doi>10.1093/rpd/ncs335</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8420
ispartof Radiation protection dosimetry, 2013-07, Vol.155 (3), p.253-267
issn 0144-8420
1742-3406
language eng
recordid cdi_proquest_miscellaneous_1372698120
source Oxford Journals Online
subjects Algorithms
Bayes Theorem
Chromosome Aberrations - radiation effects
Chromosomes, Human - radiation effects
Cytogenetics
Environmental Exposure
Humans
Radiation Dosage
Radiation Monitoring
Radiometry
Software
Statistical Distributions
title A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20six%20statistical%20distributions%20for%20analysis%20of%20chromosome%20aberration%20data%20for%20radiation%20biodosimetry&rft.jtitle=Radiation%20protection%20dosimetry&rft.au=Ainsbury,%20Elizabeth%20A&rft.date=2013-07&rft.volume=155&rft.issue=3&rft.spage=253&rft.epage=267&rft.pages=253-267&rft.issn=0144-8420&rft.eissn=1742-3406&rft_id=info:doi/10.1093/rpd/ncs335&rft_dat=%3Cproquest_cross%3E1372698120%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1372698120&rft_id=info:pmid/23325781&rfr_iscdi=true