Loading…
A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry
The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomi...
Saved in:
Published in: | Radiation protection dosimetry 2013-07, Vol.155 (3), p.253-267 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3 |
container_end_page | 267 |
container_issue | 3 |
container_start_page | 253 |
container_title | Radiation protection dosimetry |
container_volume | 155 |
creator | Ainsbury, Elizabeth A Vinnikov, Volodymyr A Maznyk, Nataliya A Lloyd, David C Rothkamm, Kai |
description | The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomial, beta, Neyman type-A and Hermite distributions are compared in terms of their applicability to 'real-life' radiation exposure situations. The identification of the most appropriate statistical model in each particular exposure situation more correctly characterises data. The results show that for acute, homogeneous (whole-body) exposures, the Poisson distribution can still give a good fit to the data. For localised partial-body exposures, the Neyman type-A model was found to be the most robust. Overall, no single distribution was found to be universally appropriate. A distribution-specific method of analysis of cytogenetic data is therefore recommended. Such an approach may lead potentially to more accurate biological dose estimates. |
doi_str_mv | 10.1093/rpd/ncs335 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1372698120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372698120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3</originalsourceid><addsrcrecordid>eNo90EtLw0AQwPFFFFurFz-A7FGE2H0l2T2W4gsKXvQc9hVcSbJxJwH77U1N9TTD8GMOf4SuKbmnRPF16t26s8B5foKWtBQs44IUp2hJqBCZFIws0AXAJyGsVLk4RwvGOctLSZcINtjGttcpQOxwrDGEbwyDHgIMweoGu2lJwYxDiB3gOiasO93sIcBB248U2wix9Vgbn5I-MOz0oH9p0i7MJxOiixBaP6T9JTqrdQP-6jhX6P3x4W37nO1en162m11mmSyHTClChBO54rL20pHalKRQnFpf1owomhdKyVx6VzhWGCYIo4ZrY7nSyklm-Qrdzn_7FL9GD0PVBrC-aXTn4wgV5SUrlKSMTPRupjZFgOTrqk-h1WlfUVIdIldT5GqOPOGb49_RtN7907-q_Act4nrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372698120</pqid></control><display><type>article</type><title>A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry</title><source>Oxford Journals Online</source><creator>Ainsbury, Elizabeth A ; Vinnikov, Volodymyr A ; Maznyk, Nataliya A ; Lloyd, David C ; Rothkamm, Kai</creator><creatorcontrib>Ainsbury, Elizabeth A ; Vinnikov, Volodymyr A ; Maznyk, Nataliya A ; Lloyd, David C ; Rothkamm, Kai</creatorcontrib><description>The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomial, beta, Neyman type-A and Hermite distributions are compared in terms of their applicability to 'real-life' radiation exposure situations. The identification of the most appropriate statistical model in each particular exposure situation more correctly characterises data. The results show that for acute, homogeneous (whole-body) exposures, the Poisson distribution can still give a good fit to the data. For localised partial-body exposures, the Neyman type-A model was found to be the most robust. Overall, no single distribution was found to be universally appropriate. A distribution-specific method of analysis of cytogenetic data is therefore recommended. Such an approach may lead potentially to more accurate biological dose estimates.</description><identifier>ISSN: 0144-8420</identifier><identifier>EISSN: 1742-3406</identifier><identifier>DOI: 10.1093/rpd/ncs335</identifier><identifier>PMID: 23325781</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Bayes Theorem ; Chromosome Aberrations - radiation effects ; Chromosomes, Human - radiation effects ; Cytogenetics ; Environmental Exposure ; Humans ; Radiation Dosage ; Radiation Monitoring ; Radiometry ; Software ; Statistical Distributions</subject><ispartof>Radiation protection dosimetry, 2013-07, Vol.155 (3), p.253-267</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3</citedby><cites>FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23325781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ainsbury, Elizabeth A</creatorcontrib><creatorcontrib>Vinnikov, Volodymyr A</creatorcontrib><creatorcontrib>Maznyk, Nataliya A</creatorcontrib><creatorcontrib>Lloyd, David C</creatorcontrib><creatorcontrib>Rothkamm, Kai</creatorcontrib><title>A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry</title><title>Radiation protection dosimetry</title><addtitle>Radiat Prot Dosimetry</addtitle><description>The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomial, beta, Neyman type-A and Hermite distributions are compared in terms of their applicability to 'real-life' radiation exposure situations. The identification of the most appropriate statistical model in each particular exposure situation more correctly characterises data. The results show that for acute, homogeneous (whole-body) exposures, the Poisson distribution can still give a good fit to the data. For localised partial-body exposures, the Neyman type-A model was found to be the most robust. Overall, no single distribution was found to be universally appropriate. A distribution-specific method of analysis of cytogenetic data is therefore recommended. Such an approach may lead potentially to more accurate biological dose estimates.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Chromosome Aberrations - radiation effects</subject><subject>Chromosomes, Human - radiation effects</subject><subject>Cytogenetics</subject><subject>Environmental Exposure</subject><subject>Humans</subject><subject>Radiation Dosage</subject><subject>Radiation Monitoring</subject><subject>Radiometry</subject><subject>Software</subject><subject>Statistical Distributions</subject><issn>0144-8420</issn><issn>1742-3406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo90EtLw0AQwPFFFFurFz-A7FGE2H0l2T2W4gsKXvQc9hVcSbJxJwH77U1N9TTD8GMOf4SuKbmnRPF16t26s8B5foKWtBQs44IUp2hJqBCZFIws0AXAJyGsVLk4RwvGOctLSZcINtjGttcpQOxwrDGEbwyDHgIMweoGu2lJwYxDiB3gOiasO93sIcBB248U2wix9Vgbn5I-MOz0oH9p0i7MJxOiixBaP6T9JTqrdQP-6jhX6P3x4W37nO1en162m11mmSyHTClChBO54rL20pHalKRQnFpf1owomhdKyVx6VzhWGCYIo4ZrY7nSyklm-Qrdzn_7FL9GD0PVBrC-aXTn4wgV5SUrlKSMTPRupjZFgOTrqk-h1WlfUVIdIldT5GqOPOGb49_RtN7907-q_Act4nrw</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Ainsbury, Elizabeth A</creator><creator>Vinnikov, Volodymyr A</creator><creator>Maznyk, Nataliya A</creator><creator>Lloyd, David C</creator><creator>Rothkamm, Kai</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201307</creationdate><title>A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry</title><author>Ainsbury, Elizabeth A ; Vinnikov, Volodymyr A ; Maznyk, Nataliya A ; Lloyd, David C ; Rothkamm, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Chromosome Aberrations - radiation effects</topic><topic>Chromosomes, Human - radiation effects</topic><topic>Cytogenetics</topic><topic>Environmental Exposure</topic><topic>Humans</topic><topic>Radiation Dosage</topic><topic>Radiation Monitoring</topic><topic>Radiometry</topic><topic>Software</topic><topic>Statistical Distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ainsbury, Elizabeth A</creatorcontrib><creatorcontrib>Vinnikov, Volodymyr A</creatorcontrib><creatorcontrib>Maznyk, Nataliya A</creatorcontrib><creatorcontrib>Lloyd, David C</creatorcontrib><creatorcontrib>Rothkamm, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiation protection dosimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ainsbury, Elizabeth A</au><au>Vinnikov, Volodymyr A</au><au>Maznyk, Nataliya A</au><au>Lloyd, David C</au><au>Rothkamm, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry</atitle><jtitle>Radiation protection dosimetry</jtitle><addtitle>Radiat Prot Dosimetry</addtitle><date>2013-07</date><risdate>2013</risdate><volume>155</volume><issue>3</issue><spage>253</spage><epage>267</epage><pages>253-267</pages><issn>0144-8420</issn><eissn>1742-3406</eissn><abstract>The Poisson distribution is the most widely recognised and commonly used distribution for cytogenetic radiation biodosimetry. However, it is recognised that, due to the complexity of radiation exposure cases, other distributions may be more properly applied. Here, the Poisson, gamma, negative binomial, beta, Neyman type-A and Hermite distributions are compared in terms of their applicability to 'real-life' radiation exposure situations. The identification of the most appropriate statistical model in each particular exposure situation more correctly characterises data. The results show that for acute, homogeneous (whole-body) exposures, the Poisson distribution can still give a good fit to the data. For localised partial-body exposures, the Neyman type-A model was found to be the most robust. Overall, no single distribution was found to be universally appropriate. A distribution-specific method of analysis of cytogenetic data is therefore recommended. Such an approach may lead potentially to more accurate biological dose estimates.</abstract><cop>England</cop><pmid>23325781</pmid><doi>10.1093/rpd/ncs335</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8420 |
ispartof | Radiation protection dosimetry, 2013-07, Vol.155 (3), p.253-267 |
issn | 0144-8420 1742-3406 |
language | eng |
recordid | cdi_proquest_miscellaneous_1372698120 |
source | Oxford Journals Online |
subjects | Algorithms Bayes Theorem Chromosome Aberrations - radiation effects Chromosomes, Human - radiation effects Cytogenetics Environmental Exposure Humans Radiation Dosage Radiation Monitoring Radiometry Software Statistical Distributions |
title | A comparison of six statistical distributions for analysis of chromosome aberration data for radiation biodosimetry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20six%20statistical%20distributions%20for%20analysis%20of%20chromosome%20aberration%20data%20for%20radiation%20biodosimetry&rft.jtitle=Radiation%20protection%20dosimetry&rft.au=Ainsbury,%20Elizabeth%20A&rft.date=2013-07&rft.volume=155&rft.issue=3&rft.spage=253&rft.epage=267&rft.pages=253-267&rft.issn=0144-8420&rft.eissn=1742-3406&rft_id=info:doi/10.1093/rpd/ncs335&rft_dat=%3Cproquest_cross%3E1372698120%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-99004d45938fe8d0fb706931ce7f20915699858ed6d26b24021b3abc39a9d82c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1372698120&rft_id=info:pmid/23325781&rfr_iscdi=true |