Loading…

Exact integral solutions for two-phase flow

Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one‐dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary‐hydraulic properties. One‐dimensional, unidirectional disp...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 1990-03, Vol.26 (3), p.399-413
Main Authors: McWhorter, David B., Sunada, Daniel K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3600-e0c2b3ea4eed3d4f811794c8bf2281d80aaccfe83466879461abd5496a0a57e73
cites cdi_FETCH-LOGICAL-a3600-e0c2b3ea4eed3d4f811794c8bf2281d80aaccfe83466879461abd5496a0a57e73
container_end_page 413
container_issue 3
container_start_page 399
container_title Water resources research
container_volume 26
creator McWhorter, David B.
Sunada, Daniel K.
description Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one‐dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary‐hydraulic properties. One‐dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore‐size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary‐hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.
doi_str_mv 10.1029/WR026i003p00399
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_13749993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13749993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3600-e0c2b3ea4eed3d4f811794c8bf2281d80aaccfe83466879461abd5496a0a57e73</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqUws2ZiQaHn2PHHiKrSIlUgVUBHy00uYEjrYKdq--8JCmJgYTjdne55bngJuaRwQyHTo-UCMuEAWNOV1kdkQDXnqdSSHZMBAGcpZVqekrMY3wEoz4UckOvJ3hZt4jYtvgZbJ9HX29b5TUwqH5J259PmzUZMqtrvzslJZeuIFz99SJ7vJk_jWTp_nN6Pb-epZQIgRSiyFUPLEUtW8kpRKjUv1KrKMkVLBdYWRYWKcSFUdxHUrsqca2HB5hIlG5Kr_m8T_OcWY2vWLhZY13aDfhsNZZJrrVkHjnqwCD7GgJVpglvbcDAUzHco5k8onZH3xs7VePgP7_bxIoduHpK091xscf_r2fBhhGQyN8uHqbmb0RfNlsoo9gUN8HNR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13749993</pqid></control><display><type>article</type><title>Exact integral solutions for two-phase flow</title><source>Wiley Online (Archive)</source><creator>McWhorter, David B. ; Sunada, Daniel K.</creator><creatorcontrib>McWhorter, David B. ; Sunada, Daniel K.</creatorcontrib><description>Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one‐dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary‐hydraulic properties. One‐dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore‐size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary‐hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/WR026i003p00399</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Water resources research, 1990-03, Vol.26 (3), p.399-413</ispartof><rights>Copyright 1990 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3600-e0c2b3ea4eed3d4f811794c8bf2281d80aaccfe83466879461abd5496a0a57e73</citedby><cites>FETCH-LOGICAL-a3600-e0c2b3ea4eed3d4f811794c8bf2281d80aaccfe83466879461abd5496a0a57e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2FWR026i003p00399$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2FWR026i003p00399$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473</link.rule.ids></links><search><creatorcontrib>McWhorter, David B.</creatorcontrib><creatorcontrib>Sunada, Daniel K.</creatorcontrib><title>Exact integral solutions for two-phase flow</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one‐dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary‐hydraulic properties. One‐dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore‐size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary‐hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.</description><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqUws2ZiQaHn2PHHiKrSIlUgVUBHy00uYEjrYKdq--8JCmJgYTjdne55bngJuaRwQyHTo-UCMuEAWNOV1kdkQDXnqdSSHZMBAGcpZVqekrMY3wEoz4UckOvJ3hZt4jYtvgZbJ9HX29b5TUwqH5J259PmzUZMqtrvzslJZeuIFz99SJ7vJk_jWTp_nN6Pb-epZQIgRSiyFUPLEUtW8kpRKjUv1KrKMkVLBdYWRYWKcSFUdxHUrsqca2HB5hIlG5Kr_m8T_OcWY2vWLhZY13aDfhsNZZJrrVkHjnqwCD7GgJVpglvbcDAUzHco5k8onZH3xs7VePgP7_bxIoduHpK091xscf_r2fBhhGQyN8uHqbmb0RfNlsoo9gUN8HNR</recordid><startdate>199003</startdate><enddate>199003</enddate><creator>McWhorter, David B.</creator><creator>Sunada, Daniel K.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope></search><sort><creationdate>199003</creationdate><title>Exact integral solutions for two-phase flow</title><author>McWhorter, David B. ; Sunada, Daniel K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3600-e0c2b3ea4eed3d4f811794c8bf2281d80aaccfe83466879461abd5496a0a57e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McWhorter, David B.</creatorcontrib><creatorcontrib>Sunada, Daniel K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McWhorter, David B.</au><au>Sunada, Daniel K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact integral solutions for two-phase flow</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1990-03</date><risdate>1990</risdate><volume>26</volume><issue>3</issue><spage>399</spage><epage>413</epage><pages>399-413</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one‐dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary‐hydraulic properties. One‐dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore‐size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary‐hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/WR026i003p00399</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 1990-03, Vol.26 (3), p.399-413
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_13749993
source Wiley Online (Archive)
title Exact integral solutions for two-phase flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20integral%20solutions%20for%20two-phase%20flow&rft.jtitle=Water%20resources%20research&rft.au=McWhorter,%20David%20B.&rft.date=1990-03&rft.volume=26&rft.issue=3&rft.spage=399&rft.epage=413&rft.pages=399-413&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/WR026i003p00399&rft_dat=%3Cproquest_cross%3E13749993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3600-e0c2b3ea4eed3d4f811794c8bf2281d80aaccfe83466879461abd5496a0a57e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13749993&rft_id=info:pmid/&rfr_iscdi=true