Loading…

Influence of Emulsifier Structure on Lipid Bioaccessibility in Oil–Water Nanoemulsions

The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. T...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2013-07, Vol.61 (26), p.6505-6515
Main Authors: Speranza, A, Corradini, M. G, Hartman, T. G, Ribnicky, D, Oren, A, Rogers, M. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil–water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf401548r