Loading…

Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension

RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxi...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 2013-07, Vol.113 (2), p.126-136
Main Authors: Dromparis, Peter, Paulin, Roxane, Sutendra, Gopinath, Qi, Andrew C, Bonnet, Sébastien, Michelakis, Evangelos D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3
cites cdi_FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3
container_end_page 136
container_issue 2
container_start_page 126
container_title Circulation research
container_volume 113
creator Dromparis, Peter
Paulin, Roxane
Sutendra, Gopinath
Qi, Andrew C
Bonnet, Sébastien
Michelakis, Evangelos D
description RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Cam levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. OBJECTIVE:We hypothesized that UCP2 deficiency reduces Cam in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. METHODS AND RESULTS:Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. CONCLUSIONS:This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.
doi_str_mv 10.1161/CIRCRESAHA.112.300699
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1399057126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1399057126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3</originalsourceid><addsrcrecordid>eNpFkcGO0zAQhiMEYsvCI4B85JJl7MRJfKxKl660iKq7yzVy7UljcOxiJ1r6ejwZ7rawp9GMvv-f0fxZ9p7CFaUV_bS42Sw2y7v5ap56dlUAVEK8yGaUszIveU1fZjMAEHldFHCRvYnxBwAtCyZeZxesqDhrgM6yPw9O-WlvjduRdfAjGkcY-YydUQadOpCvZjAqkrFHsuw6VGMkviOrw97_NpJIp8nSab-3MiaObHA0arLTQO7GgDGxLjmMXvXe6XAW3Aez22GIZB1x0r5_8lJkPdnBOxkO5LuMyUSGZDd4jU_HHYXPRNqPYUQXjXdvs1edtBHfnetl9nC9vF-s8ttvX24W89tccSpETlXHal0iFw3TILeVwrqqRMcZa6QocLsFXTWCaUq5VmVdQSM11LIWnNOykcVl9vHkuw_-14RxbAcTFVorHfoptrQQAtLjWZVQfkJV8DEG7Np9MEM6vKXQHuNrn-NLPWtP8SXdh_OKaTug_q_6l1cCyhPw6O2YXvjTTo8Y2h6lHfs25Q0FUJazhEINHPLjSBR_AXJcqvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399057126</pqid></control><display><type>article</type><title>Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension</title><source>Freely Accessible Journals</source><creator>Dromparis, Peter ; Paulin, Roxane ; Sutendra, Gopinath ; Qi, Andrew C ; Bonnet, Sébastien ; Michelakis, Evangelos D</creator><creatorcontrib>Dromparis, Peter ; Paulin, Roxane ; Sutendra, Gopinath ; Qi, Andrew C ; Bonnet, Sébastien ; Michelakis, Evangelos D</creatorcontrib><description>RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Cam levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. OBJECTIVE:We hypothesized that UCP2 deficiency reduces Cam in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. METHODS AND RESULTS:Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. CONCLUSIONS:This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.112.300699</identifier><identifier>PMID: 23652801</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Animals ; Cells, Cultured ; Endoplasmic Reticulum Stress - physiology ; Hypertension, Pulmonary - metabolism ; Hypertension, Pulmonary - pathology ; Hypoxia - metabolism ; Hypoxia - pathology ; Ion Channels - deficiency ; Mice ; Mice, Knockout ; Mitochondria - metabolism ; Mitochondrial Proteins - deficiency ; Molecular Mimicry - physiology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; Pulmonary Artery - metabolism ; Pulmonary Artery - pathology ; Random Allocation ; Uncoupling Protein 2</subject><ispartof>Circulation research, 2013-07, Vol.113 (2), p.126-136</ispartof><rights>2013 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3</citedby><cites>FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23652801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dromparis, Peter</creatorcontrib><creatorcontrib>Paulin, Roxane</creatorcontrib><creatorcontrib>Sutendra, Gopinath</creatorcontrib><creatorcontrib>Qi, Andrew C</creatorcontrib><creatorcontrib>Bonnet, Sébastien</creatorcontrib><creatorcontrib>Michelakis, Evangelos D</creatorcontrib><title>Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Cam levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. OBJECTIVE:We hypothesized that UCP2 deficiency reduces Cam in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. METHODS AND RESULTS:Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. CONCLUSIONS:This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.</description><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Hypertension, Pulmonary - metabolism</subject><subject>Hypertension, Pulmonary - pathology</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Ion Channels - deficiency</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - deficiency</subject><subject>Molecular Mimicry - physiology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>Pulmonary Artery - metabolism</subject><subject>Pulmonary Artery - pathology</subject><subject>Random Allocation</subject><subject>Uncoupling Protein 2</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkcGO0zAQhiMEYsvCI4B85JJl7MRJfKxKl660iKq7yzVy7UljcOxiJ1r6ejwZ7rawp9GMvv-f0fxZ9p7CFaUV_bS42Sw2y7v5ap56dlUAVEK8yGaUszIveU1fZjMAEHldFHCRvYnxBwAtCyZeZxesqDhrgM6yPw9O-WlvjduRdfAjGkcY-YydUQadOpCvZjAqkrFHsuw6VGMkviOrw97_NpJIp8nSab-3MiaObHA0arLTQO7GgDGxLjmMXvXe6XAW3Aez22GIZB1x0r5_8lJkPdnBOxkO5LuMyUSGZDd4jU_HHYXPRNqPYUQXjXdvs1edtBHfnetl9nC9vF-s8ttvX24W89tccSpETlXHal0iFw3TILeVwrqqRMcZa6QocLsFXTWCaUq5VmVdQSM11LIWnNOykcVl9vHkuw_-14RxbAcTFVorHfoptrQQAtLjWZVQfkJV8DEG7Np9MEM6vKXQHuNrn-NLPWtP8SXdh_OKaTug_q_6l1cCyhPw6O2YXvjTTo8Y2h6lHfs25Q0FUJazhEINHPLjSBR_AXJcqvM</recordid><startdate>20130705</startdate><enddate>20130705</enddate><creator>Dromparis, Peter</creator><creator>Paulin, Roxane</creator><creator>Sutendra, Gopinath</creator><creator>Qi, Andrew C</creator><creator>Bonnet, Sébastien</creator><creator>Michelakis, Evangelos D</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130705</creationdate><title>Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension</title><author>Dromparis, Peter ; Paulin, Roxane ; Sutendra, Gopinath ; Qi, Andrew C ; Bonnet, Sébastien ; Michelakis, Evangelos D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Hypertension, Pulmonary - metabolism</topic><topic>Hypertension, Pulmonary - pathology</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Ion Channels - deficiency</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - deficiency</topic><topic>Molecular Mimicry - physiology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>Pulmonary Artery - metabolism</topic><topic>Pulmonary Artery - pathology</topic><topic>Random Allocation</topic><topic>Uncoupling Protein 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dromparis, Peter</creatorcontrib><creatorcontrib>Paulin, Roxane</creatorcontrib><creatorcontrib>Sutendra, Gopinath</creatorcontrib><creatorcontrib>Qi, Andrew C</creatorcontrib><creatorcontrib>Bonnet, Sébastien</creatorcontrib><creatorcontrib>Michelakis, Evangelos D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dromparis, Peter</au><au>Paulin, Roxane</au><au>Sutendra, Gopinath</au><au>Qi, Andrew C</au><au>Bonnet, Sébastien</au><au>Michelakis, Evangelos D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2013-07-05</date><risdate>2013</risdate><volume>113</volume><issue>2</issue><spage>126</spage><epage>136</epage><pages>126-136</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Cam levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. OBJECTIVE:We hypothesized that UCP2 deficiency reduces Cam in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. METHODS AND RESULTS:Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. CONCLUSIONS:This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>23652801</pmid><doi>10.1161/CIRCRESAHA.112.300699</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2013-07, Vol.113 (2), p.126-136
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_1399057126
source Freely Accessible Journals
subjects Animals
Cells, Cultured
Endoplasmic Reticulum Stress - physiology
Hypertension, Pulmonary - metabolism
Hypertension, Pulmonary - pathology
Hypoxia - metabolism
Hypoxia - pathology
Ion Channels - deficiency
Mice
Mice, Knockout
Mitochondria - metabolism
Mitochondrial Proteins - deficiency
Molecular Mimicry - physiology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
Pulmonary Artery - metabolism
Pulmonary Artery - pathology
Random Allocation
Uncoupling Protein 2
title Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncoupling%20Protein%202%20Deficiency%20Mimics%20the%20Effects%20of%20Hypoxia%20and%20Endoplasmic%20Reticulum%20Stress%20on%20Mitochondria%20and%20Triggers%20Pseudohypoxic%20Pulmonary%20Vascular%20Remodeling%20and%20Pulmonary%20Hypertension&rft.jtitle=Circulation%20research&rft.au=Dromparis,%20Peter&rft.date=2013-07-05&rft.volume=113&rft.issue=2&rft.spage=126&rft.epage=136&rft.pages=126-136&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.112.300699&rft_dat=%3Cproquest_cross%3E1399057126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1399057126&rft_id=info:pmid/23652801&rfr_iscdi=true