Loading…
Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension
RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxi...
Saved in:
Published in: | Circulation research 2013-07, Vol.113 (2), p.126-136 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3 |
container_end_page | 136 |
container_issue | 2 |
container_start_page | 126 |
container_title | Circulation research |
container_volume | 113 |
creator | Dromparis, Peter Paulin, Roxane Sutendra, Gopinath Qi, Andrew C Bonnet, Sébastien Michelakis, Evangelos D |
description | RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Cam levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function.
OBJECTIVE:We hypothesized that UCP2 deficiency reduces Cam in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension.
METHODS AND RESULTS:Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia.
CONCLUSIONS:This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies. |
doi_str_mv | 10.1161/CIRCRESAHA.112.300699 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1399057126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1399057126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3</originalsourceid><addsrcrecordid>eNpFkcGO0zAQhiMEYsvCI4B85JJl7MRJfKxKl660iKq7yzVy7UljcOxiJ1r6ejwZ7rawp9GMvv-f0fxZ9p7CFaUV_bS42Sw2y7v5ap56dlUAVEK8yGaUszIveU1fZjMAEHldFHCRvYnxBwAtCyZeZxesqDhrgM6yPw9O-WlvjduRdfAjGkcY-YydUQadOpCvZjAqkrFHsuw6VGMkviOrw97_NpJIp8nSab-3MiaObHA0arLTQO7GgDGxLjmMXvXe6XAW3Aez22GIZB1x0r5_8lJkPdnBOxkO5LuMyUSGZDd4jU_HHYXPRNqPYUQXjXdvs1edtBHfnetl9nC9vF-s8ttvX24W89tccSpETlXHal0iFw3TILeVwrqqRMcZa6QocLsFXTWCaUq5VmVdQSM11LIWnNOykcVl9vHkuw_-14RxbAcTFVorHfoptrQQAtLjWZVQfkJV8DEG7Np9MEM6vKXQHuNrn-NLPWtP8SXdh_OKaTug_q_6l1cCyhPw6O2YXvjTTo8Y2h6lHfs25Q0FUJazhEINHPLjSBR_AXJcqvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399057126</pqid></control><display><type>article</type><title>Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension</title><source>Freely Accessible Journals</source><creator>Dromparis, Peter ; Paulin, Roxane ; Sutendra, Gopinath ; Qi, Andrew C ; Bonnet, Sébastien ; Michelakis, Evangelos D</creator><creatorcontrib>Dromparis, Peter ; Paulin, Roxane ; Sutendra, Gopinath ; Qi, Andrew C ; Bonnet, Sébastien ; Michelakis, Evangelos D</creatorcontrib><description>RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Cam levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function.
OBJECTIVE:We hypothesized that UCP2 deficiency reduces Cam in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension.
METHODS AND RESULTS:Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia.
CONCLUSIONS:This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.112.300699</identifier><identifier>PMID: 23652801</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Animals ; Cells, Cultured ; Endoplasmic Reticulum Stress - physiology ; Hypertension, Pulmonary - metabolism ; Hypertension, Pulmonary - pathology ; Hypoxia - metabolism ; Hypoxia - pathology ; Ion Channels - deficiency ; Mice ; Mice, Knockout ; Mitochondria - metabolism ; Mitochondrial Proteins - deficiency ; Molecular Mimicry - physiology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; Pulmonary Artery - metabolism ; Pulmonary Artery - pathology ; Random Allocation ; Uncoupling Protein 2</subject><ispartof>Circulation research, 2013-07, Vol.113 (2), p.126-136</ispartof><rights>2013 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3</citedby><cites>FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23652801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dromparis, Peter</creatorcontrib><creatorcontrib>Paulin, Roxane</creatorcontrib><creatorcontrib>Sutendra, Gopinath</creatorcontrib><creatorcontrib>Qi, Andrew C</creatorcontrib><creatorcontrib>Bonnet, Sébastien</creatorcontrib><creatorcontrib>Michelakis, Evangelos D</creatorcontrib><title>Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Cam levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function.
OBJECTIVE:We hypothesized that UCP2 deficiency reduces Cam in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension.
METHODS AND RESULTS:Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia.
CONCLUSIONS:This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.</description><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Hypertension, Pulmonary - metabolism</subject><subject>Hypertension, Pulmonary - pathology</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Ion Channels - deficiency</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - deficiency</subject><subject>Molecular Mimicry - physiology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>Pulmonary Artery - metabolism</subject><subject>Pulmonary Artery - pathology</subject><subject>Random Allocation</subject><subject>Uncoupling Protein 2</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkcGO0zAQhiMEYsvCI4B85JJl7MRJfKxKl660iKq7yzVy7UljcOxiJ1r6ejwZ7rawp9GMvv-f0fxZ9p7CFaUV_bS42Sw2y7v5ap56dlUAVEK8yGaUszIveU1fZjMAEHldFHCRvYnxBwAtCyZeZxesqDhrgM6yPw9O-WlvjduRdfAjGkcY-YydUQadOpCvZjAqkrFHsuw6VGMkviOrw97_NpJIp8nSab-3MiaObHA0arLTQO7GgDGxLjmMXvXe6XAW3Aez22GIZB1x0r5_8lJkPdnBOxkO5LuMyUSGZDd4jU_HHYXPRNqPYUQXjXdvs1edtBHfnetl9nC9vF-s8ttvX24W89tccSpETlXHal0iFw3TILeVwrqqRMcZa6QocLsFXTWCaUq5VmVdQSM11LIWnNOykcVl9vHkuw_-14RxbAcTFVorHfoptrQQAtLjWZVQfkJV8DEG7Np9MEM6vKXQHuNrn-NLPWtP8SXdh_OKaTug_q_6l1cCyhPw6O2YXvjTTo8Y2h6lHfs25Q0FUJazhEINHPLjSBR_AXJcqvM</recordid><startdate>20130705</startdate><enddate>20130705</enddate><creator>Dromparis, Peter</creator><creator>Paulin, Roxane</creator><creator>Sutendra, Gopinath</creator><creator>Qi, Andrew C</creator><creator>Bonnet, Sébastien</creator><creator>Michelakis, Evangelos D</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130705</creationdate><title>Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension</title><author>Dromparis, Peter ; Paulin, Roxane ; Sutendra, Gopinath ; Qi, Andrew C ; Bonnet, Sébastien ; Michelakis, Evangelos D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Hypertension, Pulmonary - metabolism</topic><topic>Hypertension, Pulmonary - pathology</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Ion Channels - deficiency</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - deficiency</topic><topic>Molecular Mimicry - physiology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>Pulmonary Artery - metabolism</topic><topic>Pulmonary Artery - pathology</topic><topic>Random Allocation</topic><topic>Uncoupling Protein 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dromparis, Peter</creatorcontrib><creatorcontrib>Paulin, Roxane</creatorcontrib><creatorcontrib>Sutendra, Gopinath</creatorcontrib><creatorcontrib>Qi, Andrew C</creatorcontrib><creatorcontrib>Bonnet, Sébastien</creatorcontrib><creatorcontrib>Michelakis, Evangelos D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dromparis, Peter</au><au>Paulin, Roxane</au><au>Sutendra, Gopinath</au><au>Qi, Andrew C</au><au>Bonnet, Sébastien</au><au>Michelakis, Evangelos D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2013-07-05</date><risdate>2013</risdate><volume>113</volume><issue>2</issue><spage>126</spage><epage>136</epage><pages>126-136</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>RATIONALE:Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Cam levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function.
OBJECTIVE:We hypothesized that UCP2 deficiency reduces Cam in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension.
METHODS AND RESULTS:Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia.
CONCLUSIONS:This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>23652801</pmid><doi>10.1161/CIRCRESAHA.112.300699</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2013-07, Vol.113 (2), p.126-136 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_proquest_miscellaneous_1399057126 |
source | Freely Accessible Journals |
subjects | Animals Cells, Cultured Endoplasmic Reticulum Stress - physiology Hypertension, Pulmonary - metabolism Hypertension, Pulmonary - pathology Hypoxia - metabolism Hypoxia - pathology Ion Channels - deficiency Mice Mice, Knockout Mitochondria - metabolism Mitochondrial Proteins - deficiency Molecular Mimicry - physiology Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology Pulmonary Artery - metabolism Pulmonary Artery - pathology Random Allocation Uncoupling Protein 2 |
title | Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncoupling%20Protein%202%20Deficiency%20Mimics%20the%20Effects%20of%20Hypoxia%20and%20Endoplasmic%20Reticulum%20Stress%20on%20Mitochondria%20and%20Triggers%20Pseudohypoxic%20Pulmonary%20Vascular%20Remodeling%20and%20Pulmonary%20Hypertension&rft.jtitle=Circulation%20research&rft.au=Dromparis,%20Peter&rft.date=2013-07-05&rft.volume=113&rft.issue=2&rft.spage=126&rft.epage=136&rft.pages=126-136&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.112.300699&rft_dat=%3Cproquest_cross%3E1399057126%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5199-1cf27d4e5982d0ab6ce7669f5228a93ebb0d6892d115dc47608ad07a7955148a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1399057126&rft_id=info:pmid/23652801&rfr_iscdi=true |