Loading…

POSS-Enhanced Phase Separation in Air-Processed P3HT:PCBM Bulk Heterojunction Photovoltaic Systems

Nanoparticles have been shown in some cases to improve phase separation and morphology in bulk heterojunction organic photovoltaic cells. In this study, the effect of incorporation of polyhedral oligomeric silsesquioxane (POSS) molecules of different structures in air processed poly(3-hexylthiophene...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2013-07, Vol.5 (13), p.6136-6146
Main Authors: Wu, Qi, Bhattacharya, Mithun, Morgan, Sarah E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoparticles have been shown in some cases to improve phase separation and morphology in bulk heterojunction organic photovoltaic cells. In this study, the effect of incorporation of polyhedral oligomeric silsesquioxane (POSS) molecules of different structures in air processed poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) films and photovoltaic cells was evaluated. Morphology and composition of the nanoscalephase-separated domains were determined via conductive atomic force microscopy in conjunction with nanomechanical mapping and Raman imaging. UV–vis and fluorescence spectroscopy analysis of the films was performed at different stages of the process and with different levels of solvent vapor and thermal annealing. It was found that POSS molecules of selected structures provided enhancement in morphology control in films, translating to improvements in fill factor and power conversion efficiency of laboratory-scale OPV cells. The findings indicate the potential for further improvements in solar cell performance with specifically tailored POSS/polymer phase-separated systems.
ISSN:1944-8244
1944-8252
DOI:10.1021/am4010489