Loading…
Operation results of a 100 kW class reformer for molten carbonate fuel cell
The performance and operation results of the reformer that supplies synthesis gases to a 100 kW class molten carbonate fuel cell are reported. A CH 4 conversion ratio of 95.6%, a CO conversion ratio of 31.2%, a reforming reaction temperature of 745 °C and a produced hydrogen rate of 70.7 Nm 3 h −1 a...
Saved in:
Published in: | Journal of power sources 2007-03, Vol.166 (1), p.165-171 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 171 |
container_issue | 1 |
container_start_page | 165 |
container_title | Journal of power sources |
container_volume | 166 |
creator | Seo, Hai-Kyung Eom, Young-Chang Kim, Young-Chun Lee, Sang-Deuk Gu, Jae-Hoi |
description | The performance and operation results of the reformer that supplies synthesis gases to a 100
kW class molten carbonate fuel cell are reported. A CH
4 conversion ratio of 95.6%, a CO conversion ratio of 31.2%, a reforming reaction temperature of 745
°C and a produced hydrogen rate of 70.7
Nm
3
h
−1 are obtained from a comparison of post gas analysis and theoretical estimation of thermodynamics at 87.6
h. To calculate the efficiency, the Cycle-Tempo 5.0 program is used. The thermal efficiency of the designed system is 61.1% and the real thermal efficiency of the system is 44.5% at 108
h. The low thermal efficiency is mainly attributed to supplying excess fuel to meet the outlet temperature of the reforming reactors. In the present system, the outlet temperature of the reforming reactors appears to be below the temperature required at the stack of molten carbonate fuel cell (MCFC), that is, over 580
°C. In order to maintain the outlet temperature of the reforming reactor over 580
°C, it is necessary to heat the reformed gases at the convection zone of combustion gases. For higher thermal efficiency, the combustion space and the excess fuel should be reduced until reaching minimum temperature of the surface of reforming tube, at which point has no influence on the CH
4 conversion ratio. |
doi_str_mv | 10.1016/j.jpowsour.2007.01.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_14019642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775307001085</els_id><sourcerecordid>14019642</sourcerecordid><originalsourceid>FETCH-LOGICAL-e273t-4bf9139d5a6b00d8937d1324440d890bd5dd769057f7938636f202852cd009ff3</originalsourceid><addsrcrecordid>eNo1kEtLxDAUhYMoOD7-gmSju9Z7k7Zpd8rgCwdmo7gMaR7Q2jY1aRX_vR1mhAOHy_m4HA4hVwgpAha3bdqO_if6OaQMQKSAi9gRWWEpeMJEnh-TFXBRJkLk_JScxdgCAKKAFXndjjaoqfEDDTbO3RSpd1RRBKCfH1R3KsYlcT70NtDFaO-7yQ5Uq1D7QU2Wutl2VNuuuyAnTnXRXh78nLw_Prytn5PN9ullfb9JLBN8SrLaVcgrk6uiBjBlxYVBzrIs2x1Qm9wYUVSQCycqXha8cAxYmTNtACrn-Dm52f8dg_-abZxk38RdATVYP0eJGWBVZGwBrw-gilp1LqhBN1GOoelV-JVYFlhhwRfubs_ZpfV3Y4OMurGDtqYJVk_S-EYiyN3aspX_a8vd2hJwEeN_vsJ0zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14019642</pqid></control><display><type>article</type><title>Operation results of a 100 kW class reformer for molten carbonate fuel cell</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Seo, Hai-Kyung ; Eom, Young-Chang ; Kim, Young-Chun ; Lee, Sang-Deuk ; Gu, Jae-Hoi</creator><creatorcontrib>Seo, Hai-Kyung ; Eom, Young-Chang ; Kim, Young-Chun ; Lee, Sang-Deuk ; Gu, Jae-Hoi</creatorcontrib><description>The performance and operation results of the reformer that supplies synthesis gases to a 100
kW class molten carbonate fuel cell are reported. A CH
4 conversion ratio of 95.6%, a CO conversion ratio of 31.2%, a reforming reaction temperature of 745
°C and a produced hydrogen rate of 70.7
Nm
3
h
−1 are obtained from a comparison of post gas analysis and theoretical estimation of thermodynamics at 87.6
h. To calculate the efficiency, the Cycle-Tempo 5.0 program is used. The thermal efficiency of the designed system is 61.1% and the real thermal efficiency of the system is 44.5% at 108
h. The low thermal efficiency is mainly attributed to supplying excess fuel to meet the outlet temperature of the reforming reactors. In the present system, the outlet temperature of the reforming reactors appears to be below the temperature required at the stack of molten carbonate fuel cell (MCFC), that is, over 580
°C. In order to maintain the outlet temperature of the reforming reactor over 580
°C, it is necessary to heat the reformed gases at the convection zone of combustion gases. For higher thermal efficiency, the combustion space and the excess fuel should be reduced until reaching minimum temperature of the surface of reforming tube, at which point has no influence on the CH
4 conversion ratio.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2007.01.012</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; CH 4 conversion ratio ; CO conversion ratio ; Efficiency of reformer ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Molten carbonate fuel cell (MCFC) ; S/ C ratio (steam to carbon ratio) ; Tubular type reformer</subject><ispartof>Journal of power sources, 2007-03, Vol.166 (1), p.165-171</ispartof><rights>2007</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18619163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Hai-Kyung</creatorcontrib><creatorcontrib>Eom, Young-Chang</creatorcontrib><creatorcontrib>Kim, Young-Chun</creatorcontrib><creatorcontrib>Lee, Sang-Deuk</creatorcontrib><creatorcontrib>Gu, Jae-Hoi</creatorcontrib><title>Operation results of a 100 kW class reformer for molten carbonate fuel cell</title><title>Journal of power sources</title><description>The performance and operation results of the reformer that supplies synthesis gases to a 100
kW class molten carbonate fuel cell are reported. A CH
4 conversion ratio of 95.6%, a CO conversion ratio of 31.2%, a reforming reaction temperature of 745
°C and a produced hydrogen rate of 70.7
Nm
3
h
−1 are obtained from a comparison of post gas analysis and theoretical estimation of thermodynamics at 87.6
h. To calculate the efficiency, the Cycle-Tempo 5.0 program is used. The thermal efficiency of the designed system is 61.1% and the real thermal efficiency of the system is 44.5% at 108
h. The low thermal efficiency is mainly attributed to supplying excess fuel to meet the outlet temperature of the reforming reactors. In the present system, the outlet temperature of the reforming reactors appears to be below the temperature required at the stack of molten carbonate fuel cell (MCFC), that is, over 580
°C. In order to maintain the outlet temperature of the reforming reactor over 580
°C, it is necessary to heat the reformed gases at the convection zone of combustion gases. For higher thermal efficiency, the combustion space and the excess fuel should be reduced until reaching minimum temperature of the surface of reforming tube, at which point has no influence on the CH
4 conversion ratio.</description><subject>Applied sciences</subject><subject>CH 4 conversion ratio</subject><subject>CO conversion ratio</subject><subject>Efficiency of reformer</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Molten carbonate fuel cell (MCFC)</subject><subject>S/ C ratio (steam to carbon ratio)</subject><subject>Tubular type reformer</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLxDAUhYMoOD7-gmSju9Z7k7Zpd8rgCwdmo7gMaR7Q2jY1aRX_vR1mhAOHy_m4HA4hVwgpAha3bdqO_if6OaQMQKSAi9gRWWEpeMJEnh-TFXBRJkLk_JScxdgCAKKAFXndjjaoqfEDDTbO3RSpd1RRBKCfH1R3KsYlcT70NtDFaO-7yQ5Uq1D7QU2Wutl2VNuuuyAnTnXRXh78nLw_Prytn5PN9ullfb9JLBN8SrLaVcgrk6uiBjBlxYVBzrIs2x1Qm9wYUVSQCycqXha8cAxYmTNtACrn-Dm52f8dg_-abZxk38RdATVYP0eJGWBVZGwBrw-gilp1LqhBN1GOoelV-JVYFlhhwRfubs_ZpfV3Y4OMurGDtqYJVk_S-EYiyN3aspX_a8vd2hJwEeN_vsJ0zw</recordid><startdate>20070330</startdate><enddate>20070330</enddate><creator>Seo, Hai-Kyung</creator><creator>Eom, Young-Chang</creator><creator>Kim, Young-Chun</creator><creator>Lee, Sang-Deuk</creator><creator>Gu, Jae-Hoi</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20070330</creationdate><title>Operation results of a 100 kW class reformer for molten carbonate fuel cell</title><author>Seo, Hai-Kyung ; Eom, Young-Chang ; Kim, Young-Chun ; Lee, Sang-Deuk ; Gu, Jae-Hoi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e273t-4bf9139d5a6b00d8937d1324440d890bd5dd769057f7938636f202852cd009ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>CH 4 conversion ratio</topic><topic>CO conversion ratio</topic><topic>Efficiency of reformer</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Molten carbonate fuel cell (MCFC)</topic><topic>S/ C ratio (steam to carbon ratio)</topic><topic>Tubular type reformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Hai-Kyung</creatorcontrib><creatorcontrib>Eom, Young-Chang</creatorcontrib><creatorcontrib>Kim, Young-Chun</creatorcontrib><creatorcontrib>Lee, Sang-Deuk</creatorcontrib><creatorcontrib>Gu, Jae-Hoi</creatorcontrib><collection>Pascal-Francis</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Hai-Kyung</au><au>Eom, Young-Chang</au><au>Kim, Young-Chun</au><au>Lee, Sang-Deuk</au><au>Gu, Jae-Hoi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operation results of a 100 kW class reformer for molten carbonate fuel cell</atitle><jtitle>Journal of power sources</jtitle><date>2007-03-30</date><risdate>2007</risdate><volume>166</volume><issue>1</issue><spage>165</spage><epage>171</epage><pages>165-171</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The performance and operation results of the reformer that supplies synthesis gases to a 100
kW class molten carbonate fuel cell are reported. A CH
4 conversion ratio of 95.6%, a CO conversion ratio of 31.2%, a reforming reaction temperature of 745
°C and a produced hydrogen rate of 70.7
Nm
3
h
−1 are obtained from a comparison of post gas analysis and theoretical estimation of thermodynamics at 87.6
h. To calculate the efficiency, the Cycle-Tempo 5.0 program is used. The thermal efficiency of the designed system is 61.1% and the real thermal efficiency of the system is 44.5% at 108
h. The low thermal efficiency is mainly attributed to supplying excess fuel to meet the outlet temperature of the reforming reactors. In the present system, the outlet temperature of the reforming reactors appears to be below the temperature required at the stack of molten carbonate fuel cell (MCFC), that is, over 580
°C. In order to maintain the outlet temperature of the reforming reactor over 580
°C, it is necessary to heat the reformed gases at the convection zone of combustion gases. For higher thermal efficiency, the combustion space and the excess fuel should be reduced until reaching minimum temperature of the surface of reforming tube, at which point has no influence on the CH
4 conversion ratio.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2007.01.012</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2007-03, Vol.166 (1), p.165-171 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_14019642 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences CH 4 conversion ratio CO conversion ratio Efficiency of reformer Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Molten carbonate fuel cell (MCFC) S/ C ratio (steam to carbon ratio) Tubular type reformer |
title | Operation results of a 100 kW class reformer for molten carbonate fuel cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operation%20results%20of%20a%20100%20kW%20class%20reformer%20for%20molten%20carbonate%20fuel%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Seo,%20Hai-Kyung&rft.date=2007-03-30&rft.volume=166&rft.issue=1&rft.spage=165&rft.epage=171&rft.pages=165-171&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2007.01.012&rft_dat=%3Cproquest_pasca%3E14019642%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e273t-4bf9139d5a6b00d8937d1324440d890bd5dd769057f7938636f202852cd009ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14019642&rft_id=info:pmid/&rfr_iscdi=true |