Loading…
Assessment of Kohn―Sham density functional theory and Moller―Plesset perturbation theory for ionic liquids
We present high-level benchmark calculations of interaction energies of 236 ion pair structures of ionic liquids constituting a new IL-2013 set. 33 different approaches using various basis sets are validated against these benchmark data. Overall, traditional functionals like B3LYP, without an explic...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2013-08, Vol.15 (32), p.13664-13675 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present high-level benchmark calculations of interaction energies of 236 ion pair structures of ionic liquids constituting a new IL-2013 set. 33 different approaches using various basis sets are validated against these benchmark data. Overall, traditional functionals like B3LYP, without an explicit dispersion correction, should be avoided when investigating ionic liquids. We can recommend the third version of Grimme's empirical dispersion correction (DFT-D3) and the LC-BOP functional, as well as most functionals of the Minnesota family of the M0X type. Our results highlight the importance of diffuse basis set functions for the accurate prediction of the IL energetics using any DFT functional. The best combination of reasonable accuracy and reasonable cost was found to be the M06-L functional in combination with the 6-31++G** basis set, producing a remarkable mean absolute deviation of only 4.2 kJ mol(-1) and a maximum deviation of -12.5 kJ mol(-1). Second-order Møller-Plesset perturbation theory (MP2) in combination with counterpoise-corrected triple-ζ basis sets can also be recommended for reliable calculations of energetics of ionic liquids. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c3cp51682b |